Federated Learning for Healthcare: Systematic Review and Architecture Proposal

计算机科学 背景(考古学) 保密 人气 数据科学 医疗保健 妥协 过程(计算) 人工智能 信息隐私 建筑 机器学习 知识管理 计算机安全 心理学 操作系统 生物 艺术 社会学 古生物学 视觉艺术 社会心理学 经济 经济增长 社会科学
作者
Rodolfo Stoffel Antunes,Cristiano André da Costa,Arne Küderle,Imrana Abdullahi Yari,Bjoern M. Eskofier
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:13 (4): 1-23 被引量:286
标识
DOI:10.1145/3501813
摘要

The use of machine learning (ML) with electronic health records (EHR) is growing in popularity as a means to extract knowledge that can improve the decision-making process in healthcare. Such methods require training of high-quality learning models based on diverse and comprehensive datasets, which are hard to obtain due to the sensitive nature of medical data from patients. In this context, federated learning (FL) is a methodology that enables the distributed training of machine learning models with remotely hosted datasets without the need to accumulate data and, therefore, compromise it. FL is a promising solution to improve ML-based systems, better aligning them to regulatory requirements, improving trustworthiness and data sovereignty. However, many open questions must be addressed before the use of FL becomes widespread. This article aims at presenting a systematic literature review on current research about FL in the context of EHR data for healthcare applications. Our analysis highlights the main research topics, proposed solutions, case studies, and respective ML methods. Furthermore, the article discusses a general architecture for FL applied to healthcare data based on the main insights obtained from the literature review. The collected literature corpus indicates that there is extensive research on the privacy and confidentiality aspects of training data and model sharing, which is expected given the sensitive nature of medical data. Studies also explore improvements to the aggregation mechanisms required to generate the learning model from distributed contributions and case studies with different types of medical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助方小晓采纳,获得10
刚刚
JamesPei应助yangyog采纳,获得10
4秒前
5秒前
隐形曼青应助称心的可乐采纳,获得10
7秒前
wanci应助Milktea123采纳,获得10
9秒前
萱萱完成签到,获得积分10
11秒前
不倦应助杨冰采纳,获得10
12秒前
猫咪老师应助jeeya采纳,获得30
19秒前
21秒前
22秒前
25秒前
沉静傲易完成签到,获得积分10
26秒前
xiao金发布了新的文献求助10
26秒前
杨冰发布了新的文献求助30
26秒前
28秒前
yangyog完成签到,获得积分10
30秒前
LB发布了新的文献求助10
31秒前
黄焖鸡大王完成签到 ,获得积分10
32秒前
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
Lucas应助jitanxiang采纳,获得10
36秒前
linshunan完成签到 ,获得积分10
37秒前
明月半墙发布了新的文献求助10
38秒前
41秒前
42秒前
42秒前
43秒前
汤唯完成签到,获得积分10
45秒前
47秒前
ohenry发布了新的文献求助10
47秒前
wubin69发布了新的文献求助200
48秒前
Ava应助xmhxpz采纳,获得10
48秒前
小慧发布了新的文献求助10
49秒前
归尘发布了新的文献求助10
49秒前
领导范儿应助舒服的惜灵采纳,获得10
49秒前
科研通AI5应助hyh采纳,获得10
52秒前
52秒前
老马哥完成签到 ,获得积分0
53秒前
58秒前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325704
关于积分的说明 10224008
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669040
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648