离子液体
电解质
离子电导率
材料科学
电导率
纳米材料
化学物理
离子
扩散
离子键合
电化学
膜
纳米技术
离解(化学)
化学工程
化学
热力学
物理化学
电极
有机化学
物理
生物化学
工程类
催化作用
作者
Mengyang Dong,Kuiyuan Zhang,Xinyi Wan,Shilin Wang,Shuaikang Fan,Zhizhen Ye,Yuqi Wang,Youguo Yan,Xinsheng Peng
出处
期刊:Small
[Wiley]
日期:2022-02-19
卷期号:18 (14)
被引量:34
标识
DOI:10.1002/smll.202108026
摘要
Amid the burgeoning environmental concerns, electrochemical energy storage is of great demand, inspiring the rapid development of electrolytes. Quasi-liquid solid electrolytes (QLSEs) demonstrate exciting properties that combine high ionic conductivity and safety. Herein, a QLSE system is constructed by confining ionic liquids (ILs) into 2D materials-based membranes, which creates a subtle platform for the investigation of the nanoconfined ion transport process. The highest ionic conductivity increment of 506% can be observed when ILs are under nanoconfinement. Correlation of experimental results and simulation evidently prove the diffusion behaviors of ILs are remarkably accelerated when confined in nanochannels, ascribing from the promoted dissociation of ILs. Concurrently, nanoconfined ILs demonstrate a highly ordered distribution, lower interplay, and higher free volume compared against bulk systems. This work reveals and analyzes the phenomenon of ionic conductivity elevation in nanoconfined ILs, and offers inspiring opportunities to fabricate the highly stable and efficient QLSEs based on layered nanomaterials for energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI