聚类分析
CURE数据聚类算法
计算机科学
k-中位数聚类
变量(数学)
相关聚类
加权
数据挖掘
算法
模糊聚类
树冠聚类算法
数据流聚类
单连锁聚类
分拆(数论)
模式识别(心理学)
数学
人工智能
数学分析
组合数学
医学
放射科
作者
Jian Huang,Michael K. Ng,Hongqiang Rong,Zichen Li
标识
DOI:10.1109/tpami.2005.95
摘要
This paper proposes a k-means type clustering algorithm that can automatically calculate variable weights. A new step is introduced to the k-means clustering process to iteratively update variable weights based on the current partition of data and a formula for weight calculation is proposed. The convergency theorem of the new clustering process is given. The variable weights produced by the algorithm measure the importance of variables in clustering and can be used in variable selection in data mining applications where large and complex real data are often involved. Experimental results on both synthetic and real data have shown that the new algorithm outperformed the standard k-means type algorithms in recovering clusters in data.
科研通智能强力驱动
Strongly Powered by AbleSci AI