Supervised Nonlinear Dimensionality Reduction for Visualization and Classification

模式识别(心理学) 维数之咒 扩散图 特征(语言学) 分类器(UML) 特征提取 嵌入 特征选择 特征向量 还原(数学) 聚类分析 数据挖掘
作者
Xin Geng,De-Chuan Zhan,Zhi‐Hua Zhou
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 1098-1107 被引量:372
标识
DOI:10.1109/tsmcb.2005.850151
摘要

When performing visualization and classification, people often confront the problem of dimensionality reduction. Isomap is one of the most promising nonlinear dimensionality reduction techniques. However, when Isomap is applied to real-world data, it shows some limitations, such as being sensitive to noise. In this paper, an improved version of Isomap, namely S-Isomap, is proposed. S-Isomap utilizes class information to guide the procedure of nonlinear dimensionality reduction. Such a kind of procedure is called supervised nonlinear dimensionality reduction. In S-Isomap, the neighborhood graph of the input data is constructed according to a certain kind of dissimilarity between data points, which is specially designed to integrate the class information. The dissimilarity has several good properties which help to discover the true neighborhood of the data and, thus, makes S-Isomap a robust technique for both visualization and classification, especially for real-world problems. In the visualization experiments, S-Isomap is compared with Isomap, LLE, and WeightedIso. The results show that S-Isomap performs the best. In the classification experiments, S-Isomap is used as a preprocess of classification and compared with Isomap, WeightedIso, as well as some other well-established classification methods, including the K-nearest neighbor classifier, BP neural network, J4.8 decision tree, and SVM. The results reveal that S-Isomap excels compared to Isomap and WeightedIso in classification, and it is highly competitive with those well-known classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助自己采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
Liang应助科研通管家采纳,获得20
刚刚
changping应助科研通管家采纳,获得150
刚刚
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
赘婿应助王王采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
1秒前
kk应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
小小应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得100
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
jszz应助科研通管家采纳,获得10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
pancake应助科研通管家采纳,获得30
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048461
求助须知:如何正确求助?哪些是违规求助? 4276881
关于积分的说明 13331666
捐赠科研通 4091435
什么是DOI,文献DOI怎么找? 2239026
邀请新用户注册赠送积分活动 1245918
关于科研通互助平台的介绍 1174426