已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Supervised Nonlinear Dimensionality Reduction for Visualization and Classification

模式识别(心理学) 维数之咒 扩散图 特征(语言学) 分类器(UML) 特征提取 嵌入 特征选择 特征向量 还原(数学) 聚类分析 数据挖掘
作者
Xin Geng,De-Chuan Zhan,Zhi‐Hua Zhou
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 1098-1107 被引量:372
标识
DOI:10.1109/tsmcb.2005.850151
摘要

When performing visualization and classification, people often confront the problem of dimensionality reduction. Isomap is one of the most promising nonlinear dimensionality reduction techniques. However, when Isomap is applied to real-world data, it shows some limitations, such as being sensitive to noise. In this paper, an improved version of Isomap, namely S-Isomap, is proposed. S-Isomap utilizes class information to guide the procedure of nonlinear dimensionality reduction. Such a kind of procedure is called supervised nonlinear dimensionality reduction. In S-Isomap, the neighborhood graph of the input data is constructed according to a certain kind of dissimilarity between data points, which is specially designed to integrate the class information. The dissimilarity has several good properties which help to discover the true neighborhood of the data and, thus, makes S-Isomap a robust technique for both visualization and classification, especially for real-world problems. In the visualization experiments, S-Isomap is compared with Isomap, LLE, and WeightedIso. The results show that S-Isomap performs the best. In the classification experiments, S-Isomap is used as a preprocess of classification and compared with Isomap, WeightedIso, as well as some other well-established classification methods, including the K-nearest neighbor classifier, BP neural network, J4.8 decision tree, and SVM. The results reveal that S-Isomap excels compared to Isomap and WeightedIso in classification, and it is highly competitive with those well-known classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
想酷完成签到,获得积分10
1秒前
liu完成签到 ,获得积分10
1秒前
NexusExplorer应助鲁丁丁采纳,获得10
1秒前
叉叉发布了新的文献求助10
4秒前
张瑞雪完成签到 ,获得积分10
5秒前
vivid发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
汉堡包应助粽子采纳,获得10
10秒前
12秒前
12秒前
科研通AI5应助江芯采纳,获得10
13秒前
wyx发布了新的文献求助10
13秒前
14秒前
14秒前
CipherSage应助奕奕采纳,获得30
14秒前
16秒前
鲁丁丁发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
subat发布了新的文献求助10
20秒前
意昂发布了新的文献求助10
21秒前
毛dandan发布了新的文献求助40
22秒前
称心的火车关注了科研通微信公众号
22秒前
CodeCraft应助满眼星辰采纳,获得10
24秒前
日不落完成签到,获得积分10
25秒前
25秒前
26秒前
Min完成签到 ,获得积分10
27秒前
上官若男应助辛勤的囧采纳,获得10
28秒前
月亮不会说话完成签到,获得积分10
28秒前
完美世界应助ziyege采纳,获得10
30秒前
liuzengzhang666完成签到,获得积分10
31秒前
无花果应助悄悄采纳,获得10
31秒前
小马甲应助sonya采纳,获得10
32秒前
33秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807797
求助须知:如何正确求助?哪些是违规求助? 3352436
关于积分的说明 10359243
捐赠科研通 3068570
什么是DOI,文献DOI怎么找? 1685031
邀请新用户注册赠送积分活动 810245
科研通“疑难数据库(出版商)”最低求助积分说明 765932