Construction of high-dimensional neural network potentials using environment-dependent atom pairs

维数之咒 Atom(片上系统) 计算机科学 人工神经网络 分子动力学 对势 势能面 势能 统计物理学 可靠性(半导体) 构造(python库) 化学 物理 分子 计算化学 人工智能 量子力学 功率(物理) 嵌入式系统 程序设计语言
作者
K. V. Jovan Jose,Nongnuch Artrith,Jörg Behler
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:136 (19) 被引量:128
标识
DOI:10.1063/1.4712397
摘要

An accurate determination of the potential energy is the crucial step in computer simulations of chemical processes, but using electronic structure methods on-the-fly in molecular dynamics (MD) is computationally too demanding for many systems. Constructing more efficient interatomic potentials becomes intricate with increasing dimensionality of the potential-energy surface (PES), and for numerous systems the accuracy that can be achieved is still not satisfying and far from the reliability of first-principles calculations. Feed-forward neural networks (NNs) have a very flexible functional form, and in recent years they have been shown to be an accurate tool to construct efficient PESs. High-dimensional NN potentials based on environment-dependent atomic energy contributions have been presented for a number of materials. Still, these potentials may be improved by a more detailed structural description, e.g., in form of atom pairs, which directly reflect the atomic interactions and take the chemical environment into account. We present an implementation of an NN method based on atom pairs, and its accuracy and performance are compared to the atom-based NN approach using two very different systems, the methanol molecule and metallic copper. We find that both types of NN potentials provide an excellent description of both PESs, with the pair-based method yielding a slightly higher accuracy making it a competitive alternative for addressing complex systems in MD simulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助tutu采纳,获得10
刚刚
量子星尘发布了新的文献求助20
刚刚
刚刚
彩虹屁发布了新的文献求助10
1秒前
传奇3应助李梦琦采纳,获得10
1秒前
2222应助大耳朵图图采纳,获得10
1秒前
wub发布了新的文献求助10
2秒前
wangchiyi发布了新的文献求助10
3秒前
yyy完成签到,获得积分10
3秒前
善学以致用应助皮划艇采纳,获得10
4秒前
酷波er应助怡然万声采纳,获得10
4秒前
wakaka发布了新的文献求助10
4秒前
CAOHOU举报秋千求助涉嫌违规
4秒前
风清扬应助未央采纳,获得10
5秒前
5秒前
5秒前
Captain_H完成签到,获得积分10
6秒前
大个应助haha采纳,获得10
6秒前
LJM完成签到,获得积分10
6秒前
QTQ完成签到 ,获得积分10
7秒前
7秒前
小不点完成签到,获得积分10
7秒前
7秒前
zxy完成签到,获得积分20
8秒前
整齐的问凝完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
10秒前
11秒前
chanyee发布了新的文献求助10
11秒前
zxy发布了新的文献求助10
12秒前
今后应助美味肉蟹煲采纳,获得10
12秒前
13秒前
wangchi发布了新的文献求助10
13秒前
高贵的如曼完成签到,获得积分10
13秒前
enoch发布了新的文献求助10
13秒前
张甜发布了新的文献求助10
13秒前
Hello应助小璿采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905490
求助须知:如何正确求助?哪些是违规求助? 4183360
关于积分的说明 12990057
捐赠科研通 3949603
什么是DOI,文献DOI怎么找? 2166023
邀请新用户注册赠送积分活动 1184504
关于科研通互助平台的介绍 1090823