估计员
秩(图论)
审查(临床试验)
加速失效时间模型
协变量
参数统计
数学
有效估计量
统计
班级(哲学)
半参数模型
计量经济学
数学优化
计算机科学
最小方差无偏估计量
组合数学
人工智能
作者
James M. Robins,Anastasios A. Tsiatis
标识
DOI:10.1080/03610929108830654
摘要
We propose correcting for non-compliance in randomized trials by estimating the parameters of a class of semi-parametric failure time models, the rank preserving structural failure time models, using a class of rank estimators. These models are the structural or strong version of the “accelerated failure time model with time-dependent covariates” of Cox and Oakes (1984). In this paper we develop a large sample theory for these estimators, derive the optimal estimator within this class, and briefly consider the construction of “partially adaptive” estimators whose efficiency may approach that of the optimal estimator. We show that in the absence of censoring the optimal estimator attains the semiparametric efficiency bound for the model.
科研通智能强力驱动
Strongly Powered by AbleSci AI