Artificial intelligence chain-of-thought reasoning in nuanced medical scenarios: mitigation of cognitive biases through model intransigence

谬误 认知偏差 事后诸葛亮 确认偏差 认知 认知心理学 医学 心理学 梅德林 偏差(统计) 借记 动机推理 响应偏差 情报分析 社会心理学 言语推理 认知负荷 乐观主义偏见 人类智力 隐性偏差 应用心理学 性别偏见 医学文献 信息处理 行为科学 推理心理学 人工智能
作者
Jonathan Wang,Donald A Redelmeier
出处
期刊:BMJ Quality & Safety [BMJ]
卷期号:: bmjqs-2025
标识
DOI:10.1136/bmjqs-2025-019299
摘要

Background Artificial intelligence large language models (LLMs) are increasingly used to inform clinical decisions but sometimes exhibit human-like cognitive biases when facing nuanced medical choices. Methods We tested whether new chain-of-thought reasoning LLMs might mitigate cognitive biases observed in physicians. We presented medical scenarios (n=10) to models released by DeepSeek, OpenAI and Google. Each scenario was presented in two versions that differed according to a specific bias (eg, surgery framed in survival vs mortality statistics). Responses were categorised and the extent of bias was measured by the absolute discrepancy between responses to different versions of the same scenario. The extent of intransigence (also termed dogma or inflexibility) was measured by Shannon entropy. The extent of deviance in each scenario was measured by comparing the average model response to the average practicing physician response (n=2507). Results DeepSeek-R1 mitigated 6 out of 10 cognitive biases observed in practicing physicians by generating intransigent all-or-none responses. The four biases that persisted were post hoc fallacy (34% vs 0%, p<0.001), decoy effects (44% vs 5%, p<0.001), Occam’s razor fallacy (100% vs 0%, p<0.001) and hindsight bias (56% vs 0%, p<0.001). In every scenario, the average model response deviated substantially from the average response of practicing physicians (p<0.001 for all). Similar patterns of persistent specific biases, intransigent responses and substantial deviance from practicing physicians were also apparent in OpenAI and Google. Conclusion Some biases persist in chain-of-thought reasoning LLMs, and models tend to produce intransigent recommendations. These findings highlight the role of clinicians to think broadly, respect diversity and remain vigilant when interpreting chain-of-thought reasoning artificial intelligence LLMs in nuanced medical decisions for patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Zx_1993应助OYZY采纳,获得20
2秒前
是晓宇啊发布了新的文献求助10
2秒前
2秒前
JamesPei应助辞羽采纳,获得10
2秒前
小蘑菇应助成就含玉采纳,获得10
3秒前
乜乜关注了科研通微信公众号
3秒前
勤劳蚂蚁发布了新的文献求助20
3秒前
无他完成签到 ,获得积分20
4秒前
今后应助123采纳,获得10
4秒前
张景灿完成签到,获得积分10
4秒前
wenge发布了新的文献求助10
4秒前
4秒前
Joker发布了新的文献求助10
5秒前
5秒前
英姑应助麻喽采纳,获得10
5秒前
领导范儿应助阿杜阿杜采纳,获得10
5秒前
5秒前
叶宇豪发布了新的文献求助10
6秒前
赘婿应助Dreamhappy采纳,获得10
6秒前
6秒前
6秒前
6秒前
Lucas应助善良的半仙采纳,获得10
7秒前
科研通AI6应助Shaco采纳,获得10
7秒前
8秒前
8秒前
李健应助mou采纳,获得10
8秒前
研友_VZG7GZ应助vicky采纳,获得10
8秒前
大模型应助梅雪采纳,获得10
9秒前
FXY发布了新的文献求助10
9秒前
科研通AI6应助美满的无敌采纳,获得10
9秒前
似冲发布了新的文献求助10
10秒前
一对二完成签到,获得积分10
10秒前
Elena发布了新的文献求助10
10秒前
爱听歌的半凡完成签到,获得积分10
11秒前
11秒前
wenge完成签到,获得积分20
11秒前
落雨发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593772
求助须知:如何正确求助?哪些是违规求助? 4679592
关于积分的说明 14810710
捐赠科研通 4644771
什么是DOI,文献DOI怎么找? 2534653
邀请新用户注册赠送积分活动 1502712
关于科研通互助平台的介绍 1469375