AI-driven advances in the design of RTP and TADF luminescent material

发光 材料科学 工艺工程 计算机科学 纳米技术 光电子学 工程类
作者
Yaru Shi,Yiyang Li,Jihang Zhai,Yueqing Zhang,Baochuan Hu,Yu‐Cheng Gu,Xinmeng Chen,Lianrui Hu,Xiao He
出处
期刊:Chemical physics reviews [American Institute of Physics]
卷期号:6 (3)
标识
DOI:10.1063/5.0264797
摘要

The design of room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) materials is crucial for advancing organic light-emitting diodes (OLEDs) and other optoelectronic devices. However, traditional experimental methods are inefficient. This review discusses the application of artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), in optimizing RTP and TADF materials. AI-driven approaches have revolutionized the discovery and design process by efficiently predicting material properties and performance. We highlight challenges in RTP and TADF material design, including optimizing singlet-triplet energy gaps and minimizing non-radiative decay. Additionally, we explore how ML models, combined with quantum chemical calculations, accelerate the identification of promising materials. The integration of AI allows for rapid screening and optimization of luminescent materials, improving quantum yield, fluorescence efficiency, and stability. With the rapid growth of AI applications in materials science, this review aims to provide insights and guide future research toward leveraging AI for the development of next-generation luminescent materials for OLED technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pink发布了新的文献求助10
刚刚
小杰杰完成签到,获得积分10
1秒前
Dd18753801528发布了新的文献求助10
1秒前
naturehome发布了新的文献求助10
1秒前
3秒前
4秒前
4秒前
5秒前
6秒前
小杰杰发布了新的文献求助10
6秒前
7秒前
8秒前
所所应助kingwill采纳,获得20
8秒前
9秒前
张张发布了新的文献求助10
9秒前
符聪发布了新的文献求助10
9秒前
小马甲应助李梁采纳,获得10
9秒前
科目三应助ZMTW采纳,获得10
11秒前
H_H发布了新的文献求助10
11秒前
小6s发布了新的文献求助10
12秒前
缪甲烷发布了新的文献求助10
12秒前
12秒前
12秒前
安静的寒风完成签到,获得积分10
14秒前
17秒前
19秒前
20秒前
fanmo完成签到 ,获得积分0
22秒前
所所应助凉拌土豆芽采纳,获得30
22秒前
余允怜完成签到,获得积分10
22秒前
23秒前
凡城发布了新的文献求助10
23秒前
天天快乐应助7890733采纳,获得30
23秒前
酷波er应助7890733采纳,获得30
23秒前
上官若男应助7890733采纳,获得10
23秒前
烟花应助7890733采纳,获得10
23秒前
慕青应助7890733采纳,获得10
23秒前
23秒前
25秒前
外向诗双发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160