A Self-Breathing Electrode Enabled by Interface Regulation and Gradient Wettability Engineering for Industrial H2O2 Electrosynthesis

电合成 润湿 呼吸 电极 接口(物质) 纳米技术 材料科学 化学 复合材料 电化学 医学 坐滴法 解剖 物理化学
作者
Zhangying Ye,Ye Tian,Luowei Pei,Shuo Wang,Kai Yu,Yuqing Xu,Xiaoqin Ye,Songming Zhu,Ying Liu,Zhenghua Zhang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-7096765/v1
摘要

Abstract The development of high-performance gas diffusion electrodes (GDEs) is critical for scalable and sustainable electrochemical H2O2 production. However, conventional catalyst layers (CLs) suffer from catalyst encapsulation by fused polytetrafluoroethylene (PTFE) and disordered pore structures, forming a mass transport maze that restricts species diffusion and degrades three-phase interface (TPI) formation. Here, we introduce a non-fused particulate-packed catalyst/binder interface that forms discrete hydrophilic–hydrophobic domains and eliminates the insulating “PTFE armor”. Through 3D reconstruction and high-resolution lattice Boltzmann simulations, we identify that localized variations in wettability and pore structure critically govern electrolyte intrusion and sustaining effective TPIs. Inspired by these insights, we construct a gradient CL featuring hierarchical porosity and precisely tune wettability gradients. Multiscale simulations, in-situ breakthrough pressure measurements, and microfluidic experiments reveal that this gradient design enables directional electrolyte transport and propels H2O2 away from CL, maintaining stable Faradaic efficiency (> 85%) at 300 mA cm− 2 over 300 hours. Moreover, we develop a commercialized scale-up 400 cm2 four-unit flow-through cell stack integrated with thermal, fluidic, and electronic systems, capable of continuously producing H2O2 at a low cost ($0.381 kg− 1) without external oxygen. We demonstrate that catalyst/binder interfaces govern microscale mass transport and TPI formation, with ordered porosity and wettability gradients synergistically boosting electrode performance. This work provides a fundamental design framework for next-generation GDEs and showcases a milestone demonstration of a breakthrough integrated self-breathing H2O2 electrosynthesis system with compelling commercial viability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助喜文采纳,获得10
刚刚
Galaxy8完成签到,获得积分10
刚刚
1秒前
sisi完成签到,获得积分10
2秒前
未见山完成签到,获得积分10
3秒前
YSA完成签到,获得积分10
5秒前
瑶瑶的秋千完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
9秒前
陆枝发布了新的文献求助10
10秒前
喜文发布了新的文献求助10
11秒前
12秒前
sunyanghu369发布了新的文献求助10
13秒前
林希孟完成签到 ,获得积分10
13秒前
lll完成签到,获得积分10
15秒前
16秒前
甜瓜关注了科研通微信公众号
16秒前
浮游应助苏苏苏采纳,获得10
17秒前
17秒前
浮游应助苏苏苏采纳,获得10
17秒前
17秒前
sci完成签到,获得积分10
17秒前
谨慎夜柳发布了新的文献求助10
18秒前
18秒前
yile完成签到,获得积分10
19秒前
19秒前
20秒前
Upup发布了新的文献求助200
21秒前
ye发布了新的文献求助10
22秒前
22秒前
qwertnjj发布了新的文献求助10
25秒前
AnasYusuf发布了新的文献求助10
25秒前
26秒前
ye完成签到,获得积分10
27秒前
在水一方应助喜文采纳,获得10
28秒前
独孤幻月96应助谨慎夜柳采纳,获得10
28秒前
KanmenRider完成签到,获得积分10
30秒前
sushx完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4721416
求助须知:如何正确求助?哪些是违规求助? 4081310
关于积分的说明 12621285
捐赠科研通 3786588
什么是DOI,文献DOI怎么找? 2091284
邀请新用户注册赠送积分活动 1117368
科研通“疑难数据库(出版商)”最低求助积分说明 994159