Physics-informed Kolmogorov–Arnold networks to model flow in heterogeneous porous media with a mixed pressure-velocity formulation

物理 多孔介质 流量(数学) 统计物理学 机械 多孔性 经典力学 工程类 岩土工程
作者
Xiang Rao,Yongqian Liu,Xupeng He,Hussein Hoteit
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (7)
标识
DOI:10.1063/5.0279122
摘要

Kolmogorov–Arnold networks (KANs), introduced in May 2024, present a novel network structure. Early research shows that they outperform multilayer perceptrons (MLPs) in computational efficiency, interpretability, and interaction. In MLP-based physics-informed neural networks (PINNs) for flow simulation in heterogeneous reservoirs, the mixed pressure-velocity formulation displays superior robustness and accuracy compared to the pure pressure formulation. This paper aims to create the first physics-informed KAN (PIKAN) by replacing MLP with KAN in the PINN and employing the mixed pressure-velocity formulation, assessing its computational performance in heterogeneous reservoir flow simulations. To build the PIKAN using a mixed pressure-velocity formulation, spatial coordinates serve as inputs, with pressure and velocity components as outputs. We use three neural networks to approximate pressure and the velocity components, respectively, and the model is referred to as P-V-3-PIKAN. The loss function, formulated by integrating the mixed formulation along with Dirichlet and Neumann boundary conditions, is meticulously optimized to facilitate the continuous refinement of PIKAN parameters. This mixed pressure-velocity formulation allows for automatic differentiation of the loss function, without evaluating discontinuous permeability distributions. Training and performance evaluation of the PIKANs conclude upon meeting accuracy criteria or reaching the maximum optimization steps. Four numerical experiments were conducted to assess the performance of P-V-3-PIKAN, as well as P-PIKAN using the pure pressure formulation, and P-V-3-PINN. Their efficacy was evaluated by comparing outcomes against high-fidelity benchmarks across various scenarios, encompassing unidirectional and multidirectional flows within heterogeneous reservoirs. The results indicate two key findings: First, P-V-3-PIKAN achieves superior convergence and significantly lower computational errors compared to P-V-3-PINN. This suggests that the PIKAN framework, which is predicated on the KAN model, outperforms the PINN framework, which is based on MLP. Second, when compared to P-V-3-PIKAN, which employs the mixed formulation, P-PIKAN, which uses a pure pressure formulation, exhibits notably higher computational errors. Particularly for seepage problems in reservoirs with zoned or discontinuous heterogeneity that cannot be expressed by smooth analytical functions, P-PIKAN fails to effectively capture this heterogeneity. This underscores the necessity of using mixed formulation over pure pressure formulation for handling seepage issues in heterogeneous reservoirs. This study introduces the promising KAN into flow simulation in porous media for the first time, and provides an initial reference for developing universal seepage simulation tools based on PIKAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拾光完成签到,获得积分10
刚刚
xueshidaheng完成签到,获得积分0
1秒前
hwl26完成签到,获得积分10
1秒前
ZHQ完成签到,获得积分10
1秒前
Brief完成签到,获得积分10
2秒前
吐司炸弹完成签到,获得积分10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
mayfly完成签到,获得积分10
3秒前
nanostu完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
郭义敏完成签到,获得积分0
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得150
3秒前
鹏举瞰冷雨完成签到,获得积分10
4秒前
zzh完成签到 ,获得积分10
4秒前
TGU的小马同学完成签到 ,获得积分10
4秒前
外向的醉易完成签到,获得积分10
4秒前
Noshore完成签到,获得积分10
4秒前
忧心的藏鸟完成签到 ,获得积分10
6秒前
6秒前
小可完成签到,获得积分10
7秒前
10秒前
小可发布了新的文献求助10
11秒前
Aurora完成签到,获得积分10
13秒前
jeffery111完成签到 ,获得积分10
13秒前
不安的德地完成签到 ,获得积分10
14秒前
受伤金鑫完成签到,获得积分20
14秒前
gong9456完成签到,获得积分10
14秒前
Aurora发布了新的文献求助10
15秒前
妍宝贝完成签到 ,获得积分10
16秒前
wangxin发布了新的文献求助10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
某博完成签到 ,获得积分10
19秒前
BLAZe完成签到 ,获得积分10
20秒前
zhangxin完成签到,获得积分10
20秒前
双碳小王子完成签到,获得积分10
20秒前
石幻枫完成签到 ,获得积分10
21秒前
MJMO完成签到,获得积分10
21秒前
ivy完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079744
求助须知:如何正确求助?哪些是违规求助? 4297883
关于积分的说明 13389008
捐赠科研通 4121176
什么是DOI,文献DOI怎么找? 2257046
邀请新用户注册赠送积分活动 1261338
关于科研通互助平台的介绍 1195430