亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PepBAN: A Deep Learning Framework with Bilinear Attention and Adversarial Learning for Peptide–Protein Interaction Prediction

对抗制 深度学习 人工智能 计算机科学 图形 一般化 机器学习 水准点(测量) 理论计算机科学 数学 大地测量学 数学分析 地理
作者
Shizhuo Li,Xiaorui Wang,Yuchen Zhu,Jingxuan Ge,Donghai Zhao,Hongxia Xu,Tingjun Hou,Chang‐Yu Hsieh
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (17): 9061-9074
标识
DOI:10.1021/acs.jcim.5c01713
摘要

Accurate prediction of the peptide-protein interaction (PepPI) is crucial for developing peptide-based therapeutics and vaccines. However, this computational task has traditionally faced significant challenges, such as the scarcity of structure data along with the corresponding label of the binding affinity for bound complexes. To address these challenges, we introduce PepBAN, a deep learning framework for modeling PepPI predictions. PepBAN incorporates two technical advancements: (1) adopting the protein language model ESM-2 to characterize proteins and ESM-2 or a graph-based foundation model for peptides without structure data and (2) leveraging the conditional domain adversarial learning to enhance generalization across a broad range of protein targets, especially when there are limited binding data. At the core of PepBAN is a bilinear attention network (BAN) that effectively learns the pattern of pairwise local interactions, enables the identification of key residues participating in the peptide-protein interactions, and offers an intuitive approach to interpret the underlying mechanisms of PepPIs via analyzing attention weights. Our numerical experiments demonstrated that PepBAN outperformed the previous state-of-the-art models across several well-established benchmark studies. Furthermore, we evaluated PepBAN's applicability in predicting cyclic peptide-protein interactions, a task that poses significant challenges due to the presence of noncanonical amino acids. These nonstandard residues require specialized handling, which most existing sequence-based PepPI prediction models did not adequately address, and we adopt an atom-resolved molecular graph approach to process cyclic peptides. Despite this complexity, PepBAN demonstrated a clear advantage by achieving a superior prediction performance and offering a distinct edge in tackling the emerging chemical space of cyclic peptides, which has great potential for novel therapeutic development. In summary, PepBAN serves as a valuable tool for advancing peptide-based drug and therapeutic development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
MchemG应助科研通管家采纳,获得10
30秒前
iDong完成签到 ,获得积分10
53秒前
1分钟前
木昆完成签到 ,获得积分10
1分钟前
Galri完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
花陵完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助liuliu采纳,获得10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
ymmmjjd完成签到,获得积分10
2分钟前
2分钟前
czyyy完成签到,获得积分10
2分钟前
2分钟前
2分钟前
CodeCraft应助kawsaray采纳,获得10
2分钟前
czyyy发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
mmr发布了新的文献求助10
3分钟前
liuliu发布了新的文献求助10
3分钟前
Paris完成签到 ,获得积分10
3分钟前
mmr完成签到,获得积分10
3分钟前
3分钟前
liuliu完成签到,获得积分20
3分钟前
lynn完成签到,获得积分10
4分钟前
彭于晏应助liuliu采纳,获得10
4分钟前
4分钟前
华仔应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
czyyy发布了新的文献求助10
4分钟前
kawsaray发布了新的文献求助10
4分钟前
大模型应助哦萨尔采纳,获得10
4分钟前
哦萨尔完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324064
求助须知:如何正确求助?哪些是违规求助? 4465097
关于积分的说明 13894112
捐赠科研通 4356891
什么是DOI,文献DOI怎么找? 2393076
邀请新用户注册赠送积分活动 1386577
关于科研通互助平台的介绍 1356839