Investigation of fuel cell stack performance degradation based on 1000 h durability experiments and long short-term memory prediction frameworks under dynamic load conditions

作者
Zirong Yang,Ge Yang,Xuefeng Ji,Xiaolu Li,Daokuan Jiao,Yongping Hou,Yanyi Zhang,Dong Hao
出处
期刊:Energy and AI [Elsevier]
卷期号:22: 100628-100628
标识
DOI:10.1016/j.egyai.2025.100628
摘要

Investigating the proton exchange membrane fuel cell (PEMFC) stack performance degradation phenomena is of vital importance for product development. In the study, the 1000 h durability experiment of a 5-kW fuel cell stack was performed under dynamic cyclic test conditions, and the test data containing 16 key parameters was utilized to develop the performance prediction framework based on long short-term memory (LSTM) model and LSTM model incorporating attention mechanism (Attention-LSTM). Data preprocessing and postprocessing for eight current modes as well as incremental learning approach were also presented. Experimental results show that the voltage degradation ratio is about 2.0 % at the total dynamic cyclic duration of 500 h and approximately 4.8 % at 1000 h. The degradation ratio at higher stack operating currents is found larger than that of lower operating currents. The calculated voltage degradation speeds among all current modes fall within the range of 25∼60 μV h-1. When it comes to model prediction performances, both LSTM and Attention-LSTM models could effectively capture the voltage variations under current rising and dropping conditions. The LSTM model exhibits superior transient prediction capabilities near current change moments while the Attention-LSTM model demonstrates smaller prediction deviations at relatively stable conditions. When the advanced forecast time reaches or exceeds 200 h, the Attention-LSTM model predictions agree better with the bench test data, and it maintains consistent prediction accuracy across different current modes. The study contributes to fuel cell stack durability performance analysis and degradation prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耿耿发布了新的文献求助10
刚刚
虚心远航发布了新的文献求助30
1秒前
2秒前
Moro发布了新的文献求助10
2秒前
美好寒梦完成签到,获得积分10
2秒前
骏驰天下发布了新的文献求助10
3秒前
周周完成签到,获得积分20
3秒前
3秒前
lm2567关注了科研通微信公众号
4秒前
TRY完成签到,获得积分10
4秒前
Jasper应助zlx采纳,获得10
4秒前
乔一诺完成签到,获得积分10
5秒前
能干的正豪发布了新的文献求助100
6秒前
赘婿应助1123采纳,获得20
7秒前
希望天下0贩的0应助YYY采纳,获得10
8秒前
得失完成签到 ,获得积分10
8秒前
漂亮的人生完成签到,获得积分10
8秒前
kk子完成签到,获得积分10
9秒前
巾帼发布了新的文献求助10
9秒前
25号底片发布了新的文献求助10
10秒前
10秒前
12秒前
12秒前
仇从安完成签到,获得积分10
12秒前
guaishou完成签到,获得积分10
13秒前
Hushluo完成签到,获得积分10
14秒前
善学以致用应助格调采纳,获得10
14秒前
neko给neko的求助进行了留言
14秒前
体贴的嵩发布了新的文献求助10
14秒前
14秒前
15秒前
Avery发布了新的文献求助10
15秒前
16秒前
风里等你完成签到,获得积分10
16秒前
16秒前
123发布了新的文献求助10
17秒前
zd200572完成签到,获得积分10
17秒前
lq关注了科研通微信公众号
17秒前
18秒前
爱上多hi完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5403730
求助须知:如何正确求助?哪些是违规求助? 4522356
关于积分的说明 14088619
捐赠科研通 4436155
什么是DOI,文献DOI怎么找? 2434938
邀请新用户注册赠送积分活动 1427179
关于科研通互助平台的介绍 1405746