Classification of Tool Wear State based on Dual Attention Mechanism Network

机制(生物学) 对偶(语法数字) 国家(计算机科学) 计算机科学 人工智能 算法 认识论 哲学 语言学
作者
Jiaqi Zhou,Caixu Yue,Xianli Liu,Wei Xia,Xudong Wei,Jiaxu Qu,Steven Y. Liang,Lihui Wang
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:83: 102575-102575 被引量:14
标识
DOI:10.1016/j.rcim.2023.102575
摘要

To assure the quality of product processing, precise abrasion detections must be performed on the machine's cutting tools. Consequently, the improvement of abrasion detection is crucial for the upkeep of devices in terms of processing capacity and cutting performance. The technique of tool surface abrasion imaging is one of the detection methods. This paper proposes a deep learning and computer vision-based monitoring model for conducting abrasion monitoring over cutting tools, as conventional imaging techniques always require high precision and are criticized for a complicated calculation process and their time-consuming nature resulting from manual calibration. This method is built on the SE-ResNet50 based online abrasion state monitoring model and introduces an enhanced dual-attention mechanism to learn the dependency of pixel characteristics and the inter-correlation between channels, respectively. It is proposed that the Enhance Module Network capture the underlying information on a greater scale. To achieve the self-adaptive perception of the network weights corresponding with distinct abrasion categories, attributes are recovered from the input photos, hence eliminating the complexity and restrictions associated with manual extraction. The established abrasion status categorization method is experimentally validated on a three-axis milling machine with cemented carbide tools. The results indicated that the proposed method can classify tool wear state more accurately from the raw data collected by industrial cameras under the premise of ensuring efficiency. Its recognition accuracy is up to 96.99%, and the generalization ability can obtain good results, which provides a novel concept for tool condition monitoring in actual industrial scene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John完成签到 ,获得积分10
3秒前
航行天下完成签到 ,获得积分10
4秒前
陈无敌完成签到 ,获得积分10
4秒前
gangxiaxuan完成签到,获得积分10
9秒前
Eric完成签到 ,获得积分10
17秒前
小黄人完成签到 ,获得积分10
20秒前
水晶李完成签到 ,获得积分10
22秒前
22秒前
安安完成签到 ,获得积分10
31秒前
32秒前
40秒前
www完成签到 ,获得积分10
44秒前
冷傲的帽子完成签到 ,获得积分10
46秒前
游01完成签到 ,获得积分10
54秒前
55秒前
余味完成签到,获得积分10
56秒前
雅香发布了新的文献求助10
58秒前
1分钟前
庾楼月宛如昨完成签到 ,获得积分10
1分钟前
鱼圆杂铺完成签到,获得积分10
1分钟前
布蓝图完成签到 ,获得积分10
1分钟前
风不尽,树不静完成签到 ,获得积分10
1分钟前
大喜完成签到,获得积分10
1分钟前
Zhangfu完成签到,获得积分10
1分钟前
飞鱼z完成签到 ,获得积分10
1分钟前
Ziming完成签到,获得积分10
1分钟前
秋思冬念完成签到 ,获得积分10
1分钟前
俄而完成签到 ,获得积分10
1分钟前
1分钟前
大轩发布了新的文献求助10
1分钟前
没头脑和不高兴完成签到 ,获得积分10
1分钟前
Leo完成签到 ,获得积分10
1分钟前
聪慧的娜完成签到 ,获得积分10
1分钟前
巴拉巴拉巴拉拉完成签到,获得积分10
1分钟前
伊叶之丘完成签到 ,获得积分10
1分钟前
阔达的水壶完成签到 ,获得积分10
1分钟前
Zhusy完成签到 ,获得积分10
1分钟前
科研狗完成签到 ,获得积分0
1分钟前
健忘的晓小完成签到 ,获得积分10
1分钟前
科研通AI5应助djbj2022采纳,获得80
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788357
求助须知:如何正确求助?哪些是违规求助? 3333722
关于积分的说明 10263216
捐赠科研通 3049630
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511