A microstructure estimation Transformer inspired by sparse representation for diffusion MRI

计算机科学 神经编码 稀疏逼近 变压器 人工智能 嵌入 模式识别(心理学) 归纳偏置 算法 多任务学习 量子力学 物理 经济 电压 管理 任务(项目管理)
作者
Tianshu Zheng,Guohui Yan,Haotian Li,Weihao Zheng,Wen Shi,Yi Zhang,Chuyang Ye,Dan Wu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:86: 102788-102788 被引量:20
标识
DOI:10.1016/j.media.2023.102788
摘要

Diffusion magnetic resonance imaging (dMRI) is an important tool in characterizing tissue microstructure based on biophysical models, which are typically multi-compartmental models with mathematically complex and highly non-linear forms. Resolving microstructures from these models with conventional optimization techniques is prone to estimation errors and requires dense sampling in the q-space with a long scan time. Deep learning based approaches have been proposed to overcome these limitations. Motivated by the superior performance of the Transformer in feature extraction than the convolutional structure, in this work, we present a learning-based framework based on Transformer, namely, a Microstructure Estimation Transformer with Sparse Coding (METSC) for dMRI-based microstructural parameter estimation. To take advantage of the Transformer while addressing its limitation in large training data requirement, we explicitly introduce an inductive bias-model bias into the Transformer using a sparse coding technique to facilitate the training process. Thus, the METSC is composed with three stages, an embedding stage, a sparse representation stage, and a mapping stage. The embedding stage is a Transformer-based structure that encodes the signal in a high-level space to ensure the core voxel of a patch is represented effectively. In the sparse representation stage, a dictionary is constructed by solving a sparse reconstruction problem that unfolds the Iterative Hard Thresholding (IHT) process. The mapping stage is essentially a decoder that computes the microstructural parameters from the output of the second stage, based on the weighted sum of normalized dictionary coefficients where the weights are also learned. We tested our framework on two dMRI models with downsampled q-space data, including the intravoxel incoherent motion (IVIM) model and the neurite orientation dispersion and density imaging (NODDI) model. The proposed method achieved up to 11.25 folds of acceleration while retaining high fitting accuracy for NODDI fitting, reducing the mean squared error (MSE) up to 70% compared with the previous q-space learning approach. METSC outperformed the other state-of-the-art learning-based methods, including the model-free and model-based methods. The network also showed robustness against noise and generalizability across different datasets. The superior performance of METSC indicates its potential to improve dMRI acquisition and model fitting in clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AbeleChuang完成签到,获得积分10
1秒前
1秒前
zoe完成签到,获得积分20
1秒前
cxz完成签到,获得积分10
1秒前
1秒前
满登完成签到,获得积分10
2秒前
2秒前
狗头发布了新的文献求助10
4秒前
4秒前
万能图书馆应助李端端采纳,获得10
4秒前
小小彤发布了新的文献求助10
6秒前
7秒前
8秒前
斯文败类应助he采纳,获得10
8秒前
饭鹅发布了新的文献求助10
8秒前
单阁发布了新的文献求助50
8秒前
Lucas应助卡拉马采纳,获得10
8秒前
9秒前
香蕉觅云应助阔口阔落采纳,获得10
11秒前
xyz发布了新的文献求助30
11秒前
11秒前
11秒前
阳光的伊发布了新的文献求助10
12秒前
浮游应助曹能豪采纳,获得10
13秒前
13秒前
13秒前
小二郎应助文艺明杰采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
Gauss应助科研通管家采纳,获得30
13秒前
Gauss应助科研通管家采纳,获得30
13秒前
烟花应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
狗头发布了新的文献求助30
15秒前
xuleiman发布了新的文献求助10
15秒前
溫蒂完成签到,获得积分10
15秒前
Joy完成签到 ,获得积分10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508769
求助须知:如何正确求助?哪些是违规求助? 4603814
关于积分的说明 14487899
捐赠科研通 4538341
什么是DOI,文献DOI怎么找? 2486923
邀请新用户注册赠送积分活动 1469458
关于科研通互助平台的介绍 1441678