A microstructure estimation Transformer inspired by sparse representation for diffusion MRI

计算机科学 神经编码 稀疏逼近 变压器 人工智能 嵌入 模式识别(心理学) 归纳偏置 算法 多任务学习 量子力学 物理 经济 电压 管理 任务(项目管理)
作者
Tianshu Zheng,Guohui Yan,Haotian Li,Weihao Zheng,Wen Shi,Yi Zhang,Chuyang Ye,Dan Wu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:86: 102788-102788 被引量:1
标识
DOI:10.1016/j.media.2023.102788
摘要

Diffusion magnetic resonance imaging (dMRI) is an important tool in characterizing tissue microstructure based on biophysical models, which are typically multi-compartmental models with mathematically complex and highly non-linear forms. Resolving microstructures from these models with conventional optimization techniques is prone to estimation errors and requires dense sampling in the q-space with a long scan time. Deep learning based approaches have been proposed to overcome these limitations. Motivated by the superior performance of the Transformer in feature extraction than the convolutional structure, in this work, we present a learning-based framework based on Transformer, namely, a Microstructure Estimation Transformer with Sparse Coding (METSC) for dMRI-based microstructural parameter estimation. To take advantage of the Transformer while addressing its limitation in large training data requirement, we explicitly introduce an inductive bias—model bias into the Transformer using a sparse coding technique to facilitate the training process. Thus, the METSC is composed with three stages, an embedding stage, a sparse representation stage, and a mapping stage. The embedding stage is a Transformer-based structure that encodes the signal in a high-level space to ensure the core voxel of a patch is represented effectively. In the sparse representation stage, a dictionary is constructed by solving a sparse reconstruction problem that unfolds the Iterative Hard Thresholding (IHT) process. The mapping stage is essentially a decoder that computes the microstructural parameters from the output of the second stage, based on the weighted sum of normalized dictionary coefficients where the weights are also learned. We tested our framework on two dMRI models with downsampled q-space data, including the intravoxel incoherent motion (IVIM) model and the neurite orientation dispersion and density imaging (NODDI) model. The proposed method achieved up to 11.25 folds of acceleration while retaining high fitting accuracy for NODDI fitting, reducing the mean squared error (MSE) up to 70% compared with the previous q-space learning approach. METSC outperformed the other state-of-the-art learning-based methods, including the model-free and model-based methods. The network also showed robustness against noise and generalizability across different datasets. The superior performance of METSC indicates its potential to improve dMRI acquisition and model fitting in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zhanyuji发布了新的文献求助10
2秒前
知昂张发布了新的文献求助10
3秒前
3秒前
王根基完成签到,获得积分10
3秒前
喜羊羊完成签到,获得积分20
3秒前
LL发布了新的文献求助10
4秒前
4秒前
不够萌发布了新的文献求助20
6秒前
小二郎应助兴奋柜子采纳,获得10
7秒前
我是老大应助Alex采纳,获得200
7秒前
毕业顺利发布了新的文献求助10
8秒前
田様应助himan采纳,获得10
9秒前
爆米花应助yumiao采纳,获得10
10秒前
香蕉觅云应助川川采纳,获得10
10秒前
Markie发布了新的文献求助10
10秒前
wuxufang发布了新的文献求助50
11秒前
13秒前
13秒前
14秒前
15秒前
皮水之完成签到,获得积分10
16秒前
科研通AI5应助zhanyuji采纳,获得10
17秒前
玉米发布了新的文献求助10
17秒前
正在加载发布了新的文献求助10
18秒前
安晗默发布了新的文献求助10
19秒前
不够萌完成签到,获得积分10
19秒前
19秒前
皮水之发布了新的文献求助10
20秒前
20秒前
KIM完成签到,获得积分10
20秒前
传奇3应助兴奋柜子采纳,获得10
22秒前
22秒前
喜羊羊关注了科研通微信公众号
23秒前
鹏鱼燕完成签到,获得积分10
24秒前
Lance先生完成签到,获得积分10
24秒前
wuuu_ruby发布了新的文献求助20
24秒前
24秒前
一一发布了新的文献求助10
25秒前
打打应助羊驼采纳,获得10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409