硫族元素
卤化物
锂(药物)
固态
化学
无机化学
材料科学
有机化学
物理化学
医学
内分泌学
作者
Jieun Lee,Shiyuan Zhou,Victoria Castagna Ferrari,Chen Zhao,Angela Sun,Sarah Nicholas,Yuzi Liu,Cheng‐Jun Sun,Dominik Wierzbicki,Dilworth Y. Parkinson,Jianming Bai,Wenqian Xu,Yonghua Du,Khalil Amine,Gui‐Liang Xu
出处
期刊:PubMed
日期:2025-05-15
卷期号:388 (6748): 724-729
标识
DOI:10.1126/science.adt1882
摘要
Mixing electroactive materials, solid-state electrolytes, and conductive carbon to fabricate composite electrodes is the most practiced but least understood process in all-solid-state batteries, which strongly dictates interfacial stability and charge transport. We report on universal halide segregation at interfaces across various halogen-containing solid-state electrolytes and a family of high-energy chalcogen cathodes enabled by mechanochemical reaction during ultrahigh-speed mixing. Bulk and interface characterizations by multimodal synchrotron x-ray probes and cryo-transmission electron microscopy show that the in situ segregated lithium halide interfacial layers substantially boost effective ion transport and suppress the volume change of bulk chalcogen cathodes. Various all-solid-state lithium-chalcogen cells demonstrate utilization close to 100% and extraordinary cycling stability at commercial-level areal capacities.
科研通智能强力驱动
Strongly Powered by AbleSci AI