High-Throughput Empirical and Virtual Screening To Discover Novel Inhibitors of Polyploid Giant Cancer Cells in Breast Cancer

癌细胞 癌症 化学 计算生物学 生物信息学 乳腺癌 癌症研究 计算机科学 生物 生物化学 遗传学 基因
作者
Yushu Ma,Chien-Hung Shih,Jinxiong Cheng,Hsiao-Chun Chen,Li‐Ju Wang,Yanhao Tan,Yuan Zhang,Daniel D. Brown,Steffi Oesterreich,Adrian V. Lee,Yu‐Chiao Chiu,Yu‐Chih Chen
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c05138
摘要

Therapy resistance in breast cancer is increasingly attributed to polyploid giant cancer cells (PGCCs), which arise through whole genome doubling and exhibit heightened resilience to standard treatments. Characterized by enlarged nuclei and increased DNA content, these cells tend to be dormant under therapeutic stress, driving disease relapse. Despite their critical role in resistance, strategies to effectively target PGCCs are limited, largely due to the lack of high-throughput methods for assessing their viability. Traditional assays lack the sensitivity needed to detect PGCC-specific elimination, prompting the development of novel approaches. To address this challenge, we developed a high-throughput single-cell morphological analysis workflow designed to differentiate compounds that selectively inhibit non-PGCCs, PGCCs, or both. Using this method, we screened a library of 2726 FDA Phase 1-approved drugs, identifying promising anti-PGCC candidates, including proteasome inhibitors, FOXM1, CHK, and macrocyclic lactones. Notably, RNA-Seq analysis of cells treated with the macrocyclic lactone Pyronaridine revealed AXL inhibition as a potential strategy for targeting PGCCs. Although our single-cell morphological analysis pipeline is powerful, empirical testing of all existing compounds is impractical and inefficient. To overcome this limitation, we trained a machine learning model to predict anti-PGCC efficacy in silico, integrating chemical fingerprints and compound descriptions from prior publications and databases. The model demonstrated a high correlation with experimental outcomes and predicted efficacious compounds in an expanded library of over 6,000 drugs. Among the top-ranked predictions, we experimentally validated five compounds as potent PGCC inhibitors using cell lines and patient-derived models. These findings underscore the synergistic potential of integrating high-throughput empirical screening with machine learning-based virtual screening to accelerate the discovery of novel therapies, particularly for targeting therapy-resistant PGCCs in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研完成签到 ,获得积分10
2秒前
张张发布了新的文献求助10
3秒前
小田睡不醒完成签到,获得积分10
6秒前
深情安青应助感动语蝶采纳,获得10
6秒前
打打应助研友_89Nm7L采纳,获得50
7秒前
万元帅完成签到 ,获得积分10
7秒前
8秒前
小郭呀完成签到,获得积分10
8秒前
情怀应助BUAAzmt采纳,获得10
9秒前
11秒前
13秒前
坚强怀绿完成签到,获得积分10
13秒前
孤海未蓝完成签到,获得积分10
14秒前
哈士轩完成签到,获得积分10
14秒前
windflake完成签到 ,获得积分10
14秒前
朽木完成签到,获得积分10
16秒前
逗逗完成签到,获得积分10
17秒前
斯文败类应助张张采纳,获得10
18秒前
iu完成签到,获得积分10
19秒前
花开四海完成签到 ,获得积分10
19秒前
20秒前
JamesPei应助霍师傅采纳,获得10
21秒前
科研通AI5应助霍师傅采纳,获得10
21秒前
JamesPei应助霍师傅采纳,获得10
21秒前
文献一搜就出完成签到,获得积分10
22秒前
sigla完成签到 ,获得积分10
23秒前
所所应助司连喜采纳,获得10
23秒前
24秒前
斯文败类应助晶晶采纳,获得10
24秒前
汉堡包应助shi采纳,获得10
25秒前
共享精神应助古炮采纳,获得10
26秒前
自信棒棒糖完成签到,获得积分10
31秒前
Greetdawn完成签到,获得积分10
35秒前
舒服的纸飞机完成签到,获得积分10
36秒前
39秒前
霍师傅发布了新的文献求助10
39秒前
39秒前
kelly完成签到,获得积分20
40秒前
坚强的元瑶完成签到,获得积分10
41秒前
王Hope完成签到,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777790
求助须知:如何正确求助?哪些是违规求助? 3323297
关于积分的说明 10213693
捐赠科研通 3038552
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275