A Novel Emotion Recognition Method Based on the Feature Fusion of Single-Lead EEG and ECG Signals

脑电图 计算机科学 模式识别(心理学) 人工智能 特征(语言学) 特征提取 语音识别 情绪识别 融合 神经科学 心理学 语言学 哲学
作者
Xiaoman Wang,Jianwen Zhang,Chunhua He,Heng Wu,Lianglun Cheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 8746-8756 被引量:7
标识
DOI:10.1109/jiot.2023.3320269
摘要

Emotions are complex, and people vary greatly in their accuracy in recognizing their own emotions and those of others. With advances in computer science and neuroscience, there is a desire to use automated techniques to help people identify emotions. Bio-electrical signals have been proven effective for emotion detection, but the acquisition of conventional electrocardiogram (ECG) and EEG requires medical-specific equipment, which is very expensive, uncomfortable, and inconvenient due to the large number of electrodes and the hair-covered scalp. In this article, a novel emotion recognition method based on the feature fusion of single-lead EEG and ECG signals is proposed, using the long short term memory (LSTM)-MLP-based model and the CNN-based model for feature fusion and classification, respectively, with fivefold cross-validation for validation. The ECG and EEG signals of 15 participants were collected in five states: 1) happy; 2) relaxed; 3) calm; 4) sad; and 5) afraid, each of which was stimulated using the participants' own proposed music. Various time-domain features, frequency-domain features, and nonlinear features were extracted from the ECG and EEG signals. Experimental results demonstrate that the accuracy of emotion recognition and classification of signals captured by the proposed device can reach 92.08% using the CNN model. While using the LSTM-MLP feature fusion model, the accuracy figure can be improved to 95.07%. The results of the ablation experiment indicate that the feature fusion approach does improve the accuracy of recognition. It is demonstrated that the proposed device and emotional recognition approach are effective and feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liu发布了新的文献求助10
刚刚
Akim应助凝聚态阿隅采纳,获得10
刚刚
青青完成签到,获得积分10
刚刚
Gao完成签到,获得积分10
1秒前
故意的傲柏完成签到 ,获得积分10
1秒前
3秒前
上官若男应助Tzzl0226采纳,获得10
3秒前
洁净斑马完成签到,获得积分20
3秒前
Kidmuse完成签到,获得积分10
4秒前
5秒前
5秒前
小梦完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
小蘑菇应助redbunny采纳,获得10
8秒前
10秒前
10秒前
11秒前
12秒前
jojo完成签到 ,获得积分10
12秒前
青橘短衫完成签到,获得积分10
13秒前
13秒前
13秒前
鸡丝肉酱子完成签到,获得积分10
14秒前
酷炫甜瓜完成签到,获得积分10
14秒前
chunyu发布了新的文献求助10
16秒前
Tzzl0226发布了新的文献求助10
16秒前
情怀应助阳光的雁玉采纳,获得10
16秒前
zilhua完成签到,获得积分10
17秒前
马库拉格发布了新的文献求助10
18秒前
18秒前
科研通AI5应助博修采纳,获得10
21秒前
clxgene完成签到,获得积分10
21秒前
22秒前
24秒前
b15966013195完成签到,获得积分10
24秒前
clxgene发布了新的文献求助10
26秒前
summitekey完成签到 ,获得积分10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812639
求助须知:如何正确求助?哪些是违规求助? 3357159
关于积分的说明 10385273
捐赠科研通 3074338
什么是DOI,文献DOI怎么找? 1688722
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986