Significant wave height prediction from X-band marine radar images using deep learning with 3D convolutions

有效波高 过度拟合 雷达 深度学习 人工智能 卷积神经网络 波高 计算机科学 雷达成像 遥感 机器学习 风浪 人工神经网络 地质学 电信 海洋学
作者
Ji-Woo Kwon,Won-Du Chang,Young Jun Yang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (10): e0292884-e0292884 被引量:5
标识
DOI:10.1371/journal.pone.0292884
摘要

This research introduces a deep learning method for ocean wave height estimation utilizing a Convolutional Neural Network (CNN) based on the VGGNet. The model is trained on a dataset comprising buoy wave heights and radar images, both critical for marine engineering. The dataset features X-band radar images sourced from Sokcho, Republic of Korea, spanning from June 1, 2021, to August 13, 2021. This collection amounts to 72,180 three-dimensional images, gathered at intervals of approximately 1.43 seconds. The data collected was highly unbalanced in terms of wave heights, with images of lower wave heights being more common. To deal with data imbalances in the wave height datasets, we categorized the data into three groups based on wave heights and applied stratified random sampling at each level. This approach balances the data patches for each training iteration, reducing the risk of overfitting and promoting learning from diverse data. We also implemented a system to protect data in groups with fewer instances, ensuring fair representation across all categories. This study presents a deep learning regression model for predicting wave height values from radar images. The model extracts features from sequences of 64 radar images using three-dimensional convolutions for both temporal and spatial learning. Using three-dimensional convolutions, the model captures temporal features in radar image sequences and provides accurate wave height estimates with an RMSE of 0.3576 m. The study derived results using radar images under different wave height conditions for 74 days to ensure reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小叙发布了新的文献求助10
1秒前
1秒前
Kyle发布了新的文献求助10
1秒前
2秒前
思源应助sifLiu采纳,获得10
3秒前
3秒前
3秒前
4秒前
5秒前
张铭哲发布了新的文献求助10
5秒前
英姑应助快乐紫青采纳,获得10
5秒前
lmy发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
9秒前
9秒前
科研人发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
wangli完成签到,获得积分10
11秒前
boytoa发布了新的文献求助10
12秒前
12秒前
12秒前
14秒前
sifLiu发布了新的文献求助10
15秒前
核桃发布了新的文献求助30
16秒前
思源应助务实芝麻采纳,获得10
16秒前
ding应助镓氧锌钇铀采纳,获得10
16秒前
喜羊羊发布了新的文献求助10
17秒前
酷波er应助科研通管家采纳,获得30
17秒前
浮游应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得30
17秒前
大个应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5417305
求助须知:如何正确求助?哪些是违规求助? 4533248
关于积分的说明 14139038
捐赠科研通 4449321
什么是DOI,文献DOI怎么找? 2440727
邀请新用户注册赠送积分活动 1432507
关于科研通互助平台的介绍 1409910