Rethinking Supervision in Document Unwarping: A Self-consistent Flow-free Approach

计算机科学 整改 图像扭曲 杠杆(统计) 人工智能 数字化 失真(音乐) 情报检索 深度学习 计算机视觉 数据挖掘 放大器 计算机网络 功率(物理) 物理 带宽(计算) 量子力学
作者
Shaokai Liu,Hao Feng,Wengang Zhou
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2023.3336068
摘要

In recent years, the proliferation of smartphones has led to an upsurge in the digitization of document files via these portable devices. However, images captured by smartphones often suffer from distortions, thereby negatively affecting digital preservation and downstream applications. To address this issue, we introduce DRNet, a novel deep network for document image rectification. Our approach is based on three key designs. Firstly, we exploit the intrinsic geometric consistency inherent in document images to guide the learning process of distortion rectification. Secondly, we design a coarse-to-fine rectification network to leverage the representations derived from the distorted document image, thereby enhancing the rectification result. Thirdly, we propose a unique perspective for supervising the learning of rectification networks, where undistorted document images are employed for supervision, which is free of warping mesh as ground truth in existing methods. Technically, both low-level pixel alignment and high-level semantic alignment jointly contribute to the learning of the mapping relationship between deformed document images and distortion-free ones. We evaluate our method on the challenging DocUNet Benchmark dataset, where it sets a series of state-of-the-art records, demonstrating the superiority of our approach compared to existing learning-based solutions. Additionally, we conduct a comprehensive series of ablation experiments to further validate the effectiveness and merits of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jack完成签到,获得积分10
1秒前
1秒前
1秒前
端庄的蜡烛完成签到,获得积分10
2秒前
2秒前
麻师长完成签到,获得积分10
4秒前
tqmx完成签到,获得积分10
4秒前
郭宇发布了新的文献求助10
4秒前
天天向上完成签到,获得积分10
5秒前
激情的雨旋完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
小小虾发布了新的文献求助10
6秒前
7秒前
7秒前
Ava应助无所吊谓采纳,获得10
7秒前
7秒前
归尘发布了新的文献求助30
8秒前
BX完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
11秒前
fpbovo发布了新的文献求助10
11秒前
乐乐应助Azure采纳,获得10
11秒前
蛋仔发布了新的文献求助10
12秒前
BX发布了新的文献求助10
12秒前
iioii完成签到 ,获得积分10
12秒前
twotonp发布了新的文献求助10
12秒前
12秒前
无花果应助wsl采纳,获得10
13秒前
13秒前
CodeCraft应助归尘采纳,获得10
15秒前
思源应助归尘采纳,获得10
15秒前
Hello应助归尘采纳,获得10
15秒前
英俊的铭应助明芬采纳,获得10
15秒前
扬帆远航发布了新的文献求助30
15秒前
丘比特应助归尘采纳,获得30
15秒前
隐形曼青应助归尘采纳,获得10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097829
求助须知:如何正确求助?哪些是违规求助? 3635550
关于积分的说明 11523637
捐赠科研通 3345678
什么是DOI,文献DOI怎么找? 1838900
邀请新用户注册赠送积分活动 906403
科研通“疑难数据库(出版商)”最低求助积分说明 823616