Machine Learning‐Aided Prediction and Construction of a Descriptor for Polymer Properties: A Case Study on the Lower Critical Solution Temperature of Copolymerized N‐Isopropylacrylamides

低临界溶液温度 共聚物 聚合物 材料科学 高分子化学 溶解度 智能聚合物 计算机科学 化学 有机化学 复合材料
作者
Yuuki Sugawara
出处
期刊:Macromolecular Chemistry and Physics [Wiley]
卷期号:224 (24) 被引量:5
标识
DOI:10.1002/macp.202300232
摘要

Abstract Artificial Intelligence (AI) technology has been increasingly applied in the field of chemistry in recent years. For proof of concept for the application of AI technology to polymer research, a state‐of‐the‐art machine learning (ML) technique is employed to systematically elucidate the lower critical solution temperature (LCST) of N ‐isopropylacrylamide (NIPAAm) copolymers using data collected from the literature. The information on 110 NIPAAm random copolymers is collected to extract their LCSTs and the chemical and physical parameters of the copolymers and comonomers. The ML analysis reveals that the copolymerized ratio, the elemental composition of carbon and oxygen in the comonomers, and the water solubility of the comonomers are crucial parameters affecting the LCST, and the constructed ML model successfully predicts the LCSTs of various NIPAAm copolymers. Furthermore, the genetic algorithm using symbolic regression identifies a simple and comprehensive descriptor for the LCST. This study demonstrates the usefulness of data‐driven ML techniques for polymer research with the rapid and accurate prediction of polymer properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黯然完成签到 ,获得积分10
2秒前
强健的忆梅完成签到,获得积分10
3秒前
ll发布了新的文献求助10
4秒前
4秒前
66关闭了66文献求助
5秒前
夕夕完成签到,获得积分10
6秒前
汉堡包应助等乙天采纳,获得10
7秒前
9秒前
9秒前
李健的小迷弟应助bjjtdx1997采纳,获得10
9秒前
暴躁汉堡完成签到,获得积分10
9秒前
11秒前
11秒前
麦芽糖完成签到 ,获得积分10
11秒前
爆米花应助DONG采纳,获得10
12秒前
今后应助DONG采纳,获得10
12秒前
赵勇完成签到 ,获得积分10
14秒前
14秒前
michael发布了新的文献求助10
15秒前
憨豆发布了新的文献求助10
15秒前
飞云完成签到,获得积分10
16秒前
CipherSage应助zmy采纳,获得10
17秒前
shhoing应助2368372311采纳,获得10
17秒前
端庄的如花完成签到 ,获得积分10
17秒前
所所应助DONG采纳,获得10
19秒前
打打应助DONG采纳,获得10
19秒前
充电宝应助DONG采纳,获得10
19秒前
小二郎应助DONG采纳,获得10
19秒前
玄风应助DONG采纳,获得10
19秒前
bkagyin应助DONG采纳,获得30
19秒前
Owen应助DONG采纳,获得10
19秒前
善学以致用应助DONG采纳,获得10
19秒前
CodeCraft应助DONG采纳,获得10
19秒前
善学以致用应助DONG采纳,获得10
19秒前
情怀应助高挑的小蕊采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
皮老八完成签到 ,获得积分10
21秒前
bill完成签到,获得积分10
24秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540103
求助须知:如何正确求助?哪些是违规求助? 4626748
关于积分的说明 14600653
捐赠科研通 4567718
什么是DOI,文献DOI怎么找? 2504136
邀请新用户注册赠送积分活动 1481880
关于科研通互助平台的介绍 1453487