计算机科学
内存占用
工作量
分拆(数论)
公制(单位)
持续性
带宽(计算)
足迹
炸薯条
性能指标
并行计算
操作系统
计算机网络
数学
电信
工程类
古生物学
管理
运营管理
生物
组合数学
生态学
经济
作者
Shiqing Zhang,Mahmood Naderan-Tahan,Magnus Jahre,Lieven Eeckhout
标识
DOI:10.1109/lca.2023.3313203
摘要
MCM-GPUs scale performance by integrating multiple chiplets within the same package. How to partition the aggregate compute resources across chiplets poses a fundamental trade-off in performance versus cost and sustainability. We propose the Performance Per Wafer (PPW) metric to explore this trade-off and we find that while performance is maximized with few large chiplets, and while cost and environmental footprint is minimized with many small chiplets, the optimum balance is achieved with a moderate number of medium-sized chiplets. The optimum number of chiplets depends on the workload and increases with increased inter-chiplet bandwidth.
科研通智能强力驱动
Strongly Powered by AbleSci AI