Weakly guided attention model with hierarchical interaction for brain CT report generation

计算机科学 人工智能 判决 特征(语言学) 发电机(电路理论) 分层数据库模型 匹配(统计) 代表(政治) 模式识别(心理学) 自然语言处理 医学 数据挖掘 病理 哲学 功率(物理) 语言学 物理 量子力学 政治 政治学 法学
作者
Xiaodan Zhang,Sisi Yang,Yanzhao Shi,Junzhong Ji,Ying Liu,Zheng Wang,Huimin Xu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:167: 107650-107650 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107650
摘要

Brain Computed Tomography (CT) report generation, which aims to assist radiologists in diagnosing cerebrovascular diseases efficiently, is challenging in feature representation for dozens of images and language descriptions with several sentences. Existing report generation methods have achieved significant achievement based on the encoder–decoder framework and attention mechanism. However, current research has limitations in solving the many-to-many alignment between the multi-images of Brain CT imaging and the multi-sentences of Brain CT report, and fails to attend to critical images and lesion areas, resulting in inaccurate descriptions. In this paper, we propose a novel Weakly Guided Attention Model with Hierarchical Interaction, named WGAM-HI, to improve Brain CT report generation. Specifically, WGAM-HI conducts many-to-many matching for multiple visual images and semantic sentences via a hierarchical interaction framework with a two-layer attention model and a two-layer report generator. In addition, two weakly guided mechanisms are proposed to facilitate the attention model to focus more on important images and lesion areas under the guidance of pathological events and Gradient-weighted Class Activation Mapping (Grad-CAM) respectively. The pathological event acts as a bridge between the essential serial images and the corresponding sentence, and the Grad-CAM bridges the lesion areas and pathology words. Therefore, under the hierarchical interaction with the weakly guided attention model, the report generator generates more accurate words and sentences. Experiments on the Brain CT dataset demonstrate the effectiveness of WGAM-HI in attending to important images and lesion areas gradually, and generating more accurate reports.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
山上桃花酿完成签到,获得积分10
3秒前
巅峰囚冰完成签到,获得积分10
4秒前
4秒前
6秒前
超帅的碱完成签到,获得积分10
7秒前
nana完成签到,获得积分10
8秒前
李健的小迷弟应助HAP采纳,获得10
8秒前
9秒前
帮主哥哥应助stultus采纳,获得30
10秒前
lsq完成签到,获得积分20
10秒前
干净寄翠发布了新的文献求助10
12秒前
13秒前
orixero应助阳光的冰巧采纳,获得10
13秒前
斯文败类应助小立采纳,获得10
14秒前
华仔应助小立采纳,获得10
14秒前
烟花应助小立采纳,获得10
14秒前
乐乐应助小立采纳,获得10
14秒前
科研通AI5应助小立采纳,获得10
14秒前
14秒前
斯文问旋完成签到,获得积分10
14秒前
shenxian82133完成签到,获得积分10
14秒前
16秒前
犹豫梨愁完成签到,获得积分10
16秒前
dalong完成签到,获得积分10
17秒前
xx发布了新的文献求助10
21秒前
22秒前
执着新蕾完成签到,获得积分20
22秒前
淡淡盼芙发布了新的文献求助10
24秒前
HAP发布了新的文献求助10
27秒前
27秒前
传奇3应助xx采纳,获得10
28秒前
30秒前
紫薇的舔狗完成签到,获得积分10
32秒前
要减肥小刺猬完成签到,获得积分10
33秒前
韭菜发布了新的文献求助10
33秒前
着急的千山完成签到 ,获得积分10
35秒前
35秒前
HAP完成签到,获得积分10
36秒前
492完成签到,获得积分10
37秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Progress in Inorganic Chemistry 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825763
求助须知:如何正确求助?哪些是违规求助? 3367969
关于积分的说明 10448566
捐赠科研通 3087423
什么是DOI,文献DOI怎么找? 1698676
邀请新用户注册赠送积分活动 816871
科研通“疑难数据库(出版商)”最低求助积分说明 769973