数学
李普希茨连续性
随机微分方程
趋同(经济学)
理论(学习稳定性)
应用数学
均方
平方(代数)
一致性(知识库)
数学分析
随机偏微分方程
微分方程
离散数学
计算机科学
几何学
经济增长
机器学习
经济
作者
Dongxuan Wu,Zhi Li,Liping Xu,Chuanhui Peng
标识
DOI:10.1080/00036811.2023.2262734
摘要
AbstractThis paper investigates the split-step theta (SST) method to approximate a class of time-changed stochastic differential equations, whose drift coefficient can grow super-linearly and diffusion coefficient obeys the global Lipschitz condition. The strong convergence of the SST method is proved, and the SST method attains the classical 1 of convergence. In addition, the mean square stability of the time-changed stochastic differential equations is investigated. Two examples are presented to show the consistency of the theoretical results.Keywords: Time-changed stochastic differential equationssplit-step theta methodstrong convergencemean square stabilityAMS SUBJECT CLASSIFICATIONS: 60H1065C30 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Natural Science Foundation of China [11901058] Natural Science Foundation of Hubei Province [2021CFB543].
科研通智能强力驱动
Strongly Powered by AbleSci AI