亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An artificial neural network model for capacitance prediction of porous carbon-based supercapacitor electrodes

超级电容器 电容 材料科学 介电谱 等效串联电阻 电极 电解质 纳米技术 电化学 电压 电气工程 工程类 化学 物理化学
作者
Wael Z. Tawfik,Samar N. Mohammad,Kamel H. Rahouma,Emad Tammam,Gerges M. Salama
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:73: 108830-108830 被引量:36
标识
DOI:10.1016/j.est.2023.108830
摘要

Among energy storage devices, the last decades have witnessed the rapid spread of usage of carbon-based electrodes for electric double-layer capacitors (EDLCs) due to their large surface area, low cost, and high porosity. It is crucial to develop an accurate and efficient forecasting model for electrochemical performance to reduce the time needed for making suitable designs and choosing testing electrode materials. As a result, the use of machine learning (ML) approaches in creating a predicting model for the capacitance of carbon-based supercapacitors looks critical and provides the electrode characteristics' relative relevance. Data extracted from nearly a hundred published experimental research papers to select supercapacitors with certain electrode morphologies such as mesoporous, nanoporous, microporous, and hierarchical porous carbon electrode. The data was examined using machine learning techniques to predict the supercapacitor's specific capacitance (F/g). Electrode material structural qualities and various physicochemical test features such as electrolyte material, pore volume, and specific surface area. Electrochemical test features acquired via electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD) test investigations for the same purpose include: cell configuration, current density, applied potential window, charge-transfer resistance (RCT), and equivalent series resistance (ESR) were used as input features to predict the corresponding capacitance performance. In the present study, Lasso, Support Vector Machine Regression (SVMR), and Artificial Neural Networks (ANN) with different structures were examined to predict the capacitance of the supercapacitor. The exhibition of the ML models measured concerning the root mean square error (RMSE), the correlation between expected yield and yield provided by the system. The developed ANN model with RMSE, MAE, and R values of 30.82, 46.5624 and 0.89537, respectively, provides outcomes for the prediction that are highly accurate compared to other models created for this purpose. According to the analysis of the input features done using the SHAP (SHapley Additive exPlanations) framework, the specific surface area had the biggest impact on the ANN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助我要发nature采纳,获得10
28秒前
斯文败类应助ma采纳,获得10
44秒前
53秒前
ma发布了新的文献求助10
59秒前
shw完成签到,获得积分10
1分钟前
obedVL完成签到,获得积分10
1分钟前
稳重的雨灵完成签到,获得积分10
1分钟前
1分钟前
在水一方应助可靠的寒风采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI2S应助稳重的雨灵采纳,获得10
2分钟前
2分钟前
2分钟前
我要发nature完成签到,获得积分10
2分钟前
Hello应助我要发nature采纳,获得10
2分钟前
梁昊完成签到,获得积分10
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
梁昊发布了新的文献求助10
2分钟前
欣喜眼神发布了新的文献求助10
3分钟前
3分钟前
吐丝麵包完成签到 ,获得积分10
3分钟前
StonesKing发布了新的文献求助10
3分钟前
jyy应助欣喜眼神采纳,获得10
3分钟前
3分钟前
blueblue发布了新的文献求助10
3分钟前
3分钟前
blueblue完成签到,获得积分10
3分钟前
虚幻玉米完成签到 ,获得积分10
4分钟前
4分钟前
深情安青应助juju采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
ineffable发布了新的文献求助10
4分钟前
juju发布了新的文献求助10
4分钟前
大树梨完成签到,获得积分10
5分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840784
求助须知:如何正确求助?哪些是违规求助? 3382680
关于积分的说明 10526315
捐赠科研通 3102551
什么是DOI,文献DOI怎么找? 1708888
邀请新用户注册赠送积分活动 822765
科研通“疑难数据库(出版商)”最低求助积分说明 773575