Deep-learning and conventional radiomics to predict IDH genotyping status based on magnetic resonance imaging data in adult diffuse glioma

接收机工作特性 流体衰减反转恢复 磁共振成像 Lasso(编程语言) 特征选择 人工智能 无线电技术 异柠檬酸脱氢酶 胶质瘤 逻辑回归 医学 计算机科学 机器学习 放射科 生物 万维网 癌症研究 生物化学
作者
Hongjian Zhang,Xiao Fan,Junxia Zhang,Zhiyuan Wei,Wei Feng,Yifang Hu,Jiaying Ni,Fushen Yao,Gaoxin Zhou,Cheng Wan,Xin Zhang,Junjie Wang,Yun Liu,Yongping You,Yun Yu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13 被引量:11
标识
DOI:10.3389/fonc.2023.1143688
摘要

In adult diffuse glioma, preoperative detection of isocitrate dehydrogenase (IDH) status helps clinicians develop surgical strategies and evaluate patient prognosis. Here, we aim to identify an optimal machine-learning model for prediction of IDH genotyping by combining deep-learning (DL) signatures and conventional radiomics (CR) features as model predictors.In this study, a total of 486 patients with adult diffuse gliomas were retrospectively collected from our medical center (n=268) and the public database (TCGA, n=218). All included patients were randomly divided into the training and validation sets by using nested 10-fold cross-validation. A total of 6,736 CR features were extracted from four MRI modalities in each patient, namely T1WI, T1CE, T2WI, and FLAIR. The LASSO algorithm was performed for CR feature selection. In each MRI modality, we applied a CNN+LSTM-based neural network to extract DL features and integrate these features into a DL signature after the fully connected layer with sigmoid activation. Eight classic machine-learning models were analyzed and compared in terms of their prediction performance and stability in IDH genotyping by combining the LASSO-selected CR features and integrated DL signatures as model predictors. In the validation sets, the prediction performance was evaluated by using accuracy and the area under the curve (AUC) of the receiver operating characteristics, while the model stability was analyzed by using the relative standard deviation of the AUC (RSDAUC). Subgroup analyses of DL signatures and CR features were also individually conducted to explore their independent prediction values.Logistic regression (LR) achieved favorable prediction performance (AUC: 0.920 ± 0.043, accuracy: 0.843 ± 0.044), whereas support vector machine with the linear kernel (l-SVM) displayed low prediction performance (AUC: 0.812 ± 0.052, accuracy: 0.821 ± 0.050). With regard to stability, LR also showed high robustness against data perturbation (RSDAUC: 4.7%). Subgroup analyses showed that DL signatures outperformed CR features (DL, AUC: 0.915 ± 0.054, accuracy: 0.835 ± 0.061, RSDAUC: 5.9%; CR, AUC: 0.830 ± 0.066, accuracy: 0.771 ± 0.051, RSDAUC: 8.0%), while DL and DL+CR achieved similar prediction results.In IDH genotyping, LR is a promising machine-learning classification model. Compared with CR features, DL signatures exhibit markedly superior prediction values and discriminative capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
集典完成签到 ,获得积分10
2秒前
颢懿完成签到 ,获得积分10
7秒前
瘦瘦的迎梦完成签到 ,获得积分10
13秒前
Lyn完成签到 ,获得积分10
14秒前
HY完成签到 ,获得积分10
16秒前
独立江湖女完成签到 ,获得积分10
18秒前
坦率雪枫完成签到 ,获得积分10
20秒前
西洲完成签到 ,获得积分10
32秒前
悠悠完成签到 ,获得积分10
34秒前
猪猪完成签到 ,获得积分10
35秒前
38秒前
38秒前
39秒前
39秒前
豆腐青菜雨完成签到 ,获得积分10
47秒前
59秒前
HXX19完成签到 ,获得积分10
1分钟前
朱比特完成签到,获得积分10
1分钟前
默11完成签到 ,获得积分10
1分钟前
su完成签到 ,获得积分10
1分钟前
小小少年发布了新的文献求助10
1分钟前
xiaofeiyan完成签到 ,获得积分10
1分钟前
1分钟前
自觉石头完成签到 ,获得积分10
2分钟前
微笑的若魔完成签到 ,获得积分10
2分钟前
轩辕德地完成签到,获得积分10
2分钟前
悄悄睡觉完成签到 ,获得积分10
2分钟前
alexlpb完成签到,获得积分0
2分钟前
2分钟前
橙子完成签到 ,获得积分10
2分钟前
大模型应助yee采纳,获得10
2分钟前
wyh295352318完成签到 ,获得积分10
2分钟前
2分钟前
居居侠完成签到 ,获得积分10
2分钟前
森森完成签到 ,获得积分10
2分钟前
秋水完成签到 ,获得积分10
2分钟前
ybwei2008_163完成签到,获得积分20
2分钟前
2分钟前
典雅三颜完成签到 ,获得积分10
2分钟前
振江发布了新的文献求助10
2分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4043535
求助须知:如何正确求助?哪些是违规求助? 3581248
关于积分的说明 11383837
捐赠科研通 3308656
什么是DOI,文献DOI怎么找? 1821127
邀请新用户注册赠送积分活动 893553
科研通“疑难数据库(出版商)”最低求助积分说明 815751