Deep-learning and conventional radiomics to predict IDH genotyping status based on magnetic resonance imaging data in adult diffuse glioma

接收机工作特性 流体衰减反转恢复 磁共振成像 Lasso(编程语言) 特征选择 人工智能 无线电技术 异柠檬酸脱氢酶 胶质瘤 逻辑回归 医学 计算机科学 机器学习 放射科 生物 万维网 癌症研究 生物化学
作者
Hongjian Zhang,Xiao Fan,Junxia Zhang,Zhiyuan Wei,Wei Feng,Yifang Hu,Jiaying Ni,Fushen Yao,Gaoxin Zhou,Cheng Wan,Xin Zhang,Junjie Wang,Yun Liu,Yongping You,Yun Yu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13 被引量:11
标识
DOI:10.3389/fonc.2023.1143688
摘要

In adult diffuse glioma, preoperative detection of isocitrate dehydrogenase (IDH) status helps clinicians develop surgical strategies and evaluate patient prognosis. Here, we aim to identify an optimal machine-learning model for prediction of IDH genotyping by combining deep-learning (DL) signatures and conventional radiomics (CR) features as model predictors.In this study, a total of 486 patients with adult diffuse gliomas were retrospectively collected from our medical center (n=268) and the public database (TCGA, n=218). All included patients were randomly divided into the training and validation sets by using nested 10-fold cross-validation. A total of 6,736 CR features were extracted from four MRI modalities in each patient, namely T1WI, T1CE, T2WI, and FLAIR. The LASSO algorithm was performed for CR feature selection. In each MRI modality, we applied a CNN+LSTM-based neural network to extract DL features and integrate these features into a DL signature after the fully connected layer with sigmoid activation. Eight classic machine-learning models were analyzed and compared in terms of their prediction performance and stability in IDH genotyping by combining the LASSO-selected CR features and integrated DL signatures as model predictors. In the validation sets, the prediction performance was evaluated by using accuracy and the area under the curve (AUC) of the receiver operating characteristics, while the model stability was analyzed by using the relative standard deviation of the AUC (RSDAUC). Subgroup analyses of DL signatures and CR features were also individually conducted to explore their independent prediction values.Logistic regression (LR) achieved favorable prediction performance (AUC: 0.920 ± 0.043, accuracy: 0.843 ± 0.044), whereas support vector machine with the linear kernel (l-SVM) displayed low prediction performance (AUC: 0.812 ± 0.052, accuracy: 0.821 ± 0.050). With regard to stability, LR also showed high robustness against data perturbation (RSDAUC: 4.7%). Subgroup analyses showed that DL signatures outperformed CR features (DL, AUC: 0.915 ± 0.054, accuracy: 0.835 ± 0.061, RSDAUC: 5.9%; CR, AUC: 0.830 ± 0.066, accuracy: 0.771 ± 0.051, RSDAUC: 8.0%), while DL and DL+CR achieved similar prediction results.In IDH genotyping, LR is a promising machine-learning classification model. Compared with CR features, DL signatures exhibit markedly superior prediction values and discriminative capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
air-yi完成签到,获得积分10
1秒前
Panmm发布了新的文献求助10
1秒前
jian发布了新的文献求助10
2秒前
二两白茶发布了新的文献求助10
2秒前
2秒前
2秒前
认真的雪完成签到,获得积分10
3秒前
852应助可爱的猪猪采纳,获得10
3秒前
猛男发布了新的文献求助10
4秒前
跳跃的惮发布了新的文献求助10
4秒前
orixero应助zimu012采纳,获得10
4秒前
科研通AI5应助忧虑的代容采纳,获得10
5秒前
科研通AI5应助响铃采纳,获得10
5秒前
如意惜文发布了新的文献求助30
5秒前
5秒前
5秒前
6秒前
善学以致用应助Bi8bo采纳,获得10
6秒前
二两白茶完成签到,获得积分10
6秒前
搜集达人应助LHT采纳,获得10
7秒前
坚持完成签到,获得积分10
8秒前
小李完成签到,获得积分10
9秒前
完美世界应助自由的聋五采纳,获得10
9秒前
斯文败类应助Joyj99采纳,获得10
9秒前
xu发布了新的文献求助10
10秒前
深情安青应助Adfireu采纳,获得10
10秒前
顾矜应助Panmm采纳,获得10
10秒前
12秒前
乐乐发布了新的文献求助10
12秒前
vision完成签到,获得积分10
12秒前
淡淡菠萝完成签到 ,获得积分10
12秒前
12秒前
12秒前
sdq完成签到,获得积分10
13秒前
华仔应助激昂的凉面采纳,获得10
13秒前
13秒前
香蕉觅云应助xiaolv采纳,获得10
13秒前
jian完成签到,获得积分10
14秒前
cqrao完成签到,获得积分20
14秒前
李健的小迷弟应助mysk采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786253
求助须知:如何正确求助?哪些是违规求助? 3332038
关于积分的说明 10252966
捐赠科研通 3047287
什么是DOI,文献DOI怎么找? 1672503
邀请新用户注册赠送积分活动 801315
科研通“疑难数据库(出版商)”最低求助积分说明 760141