Multimodal Adaptive Emotion Transformer with Flexible Modality Inputs on A Novel Dataset with Continuous Labels

厌恶 计算机科学 惊喜 情绪分类 脑电图 人工智能 愤怒 唤醒 语音识别 认知心理学 心理学 沟通 精神科 神经科学
作者
Wei-Bang Jiang,Xuan-Hao Liu,Wei‐Long Zheng,Bao‐Liang Lu
标识
DOI:10.1145/3581783.3613797
摘要

Emotion recognition from physiological signals is a topic of widespread interest, and researchers continue to develop novel techniques for perceiving emotions. However, the emergence of deep learning has highlighted the need for high-quality emotional datasets to accurately decode human emotions. In this study, we present a novel multimodal emotion dataset that incorporates electroencephalography (EEG) and eye movement signals to systematically explore human emotions. Seven basic emotions (happy, sad, fear, disgust, surprise, anger, and neutral) are elicited by a large number of 80 videos and fully investigated with continuous labels that indicate the intensity of the corresponding emotions. Additionally, we propose a novel Multimodal Adaptive Emotion Transformer (MAET), that can flexibly process both unimodal and multimodal inputs. Adversarial training is utilized in MAET to mitigate subject discrepancy, which enhances domain generalization. Our extensive experiments, encompassing both subject-dependent and cross-subject conditions, demonstrate MAET's superior performance in handling various inputs. The filtering of data for high emotional evocation using continuous labels proved to be effective in the experiments. Furthermore, the complementary properties between EEG and eye movements are observed. Our code is available at https://github.com/935963004/MAET.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助人机采纳,获得10
刚刚
森森完成签到,获得积分20
1秒前
zgnb发布了新的文献求助10
1秒前
阔达初南完成签到 ,获得积分10
2秒前
丘比特应助人类繁殖学采纳,获得10
3秒前
jiangchuansm完成签到,获得积分10
3秒前
3秒前
czlianjoy完成签到,获得积分10
3秒前
3秒前
电催化托完成签到,获得积分10
4秒前
4秒前
anna521212完成签到 ,获得积分10
4秒前
三三发布了新的文献求助10
5秒前
传奇3应助儒雅龙采纳,获得10
5秒前
liuhuo完成签到,获得积分10
5秒前
斯文的以山完成签到,获得积分10
5秒前
医痞子发布了新的文献求助10
6秒前
小宝爸爸完成签到,获得积分10
6秒前
鲁酷完成签到,获得积分10
6秒前
7秒前
李健的小迷弟应助momo采纳,获得10
7秒前
jiabaoyu发布了新的文献求助10
7秒前
舒心的芝麻完成签到 ,获得积分10
8秒前
Jasper应助青栞采纳,获得10
8秒前
睡觉做大梦完成签到,获得积分10
9秒前
9秒前
tramp应助Ryan采纳,获得10
9秒前
风趣的天奇完成签到,获得积分10
9秒前
李爱国应助阔达的雨南采纳,获得10
9秒前
方百招完成签到,获得积分10
10秒前
忧郁含海完成签到,获得积分10
10秒前
神勇朝雪应助nhh采纳,获得20
10秒前
bbanshan完成签到,获得积分10
10秒前
Jasper应助YC采纳,获得10
10秒前
昏睡的蟠桃应助YC采纳,获得20
10秒前
xiaohuhuan完成签到,获得积分10
10秒前
11秒前
kiki完成签到,获得积分10
11秒前
猫小乐C发布了新的文献求助10
11秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785072
求助须知:如何正确求助?哪些是违规求助? 3330486
关于积分的说明 10246402
捐赠科研通 3045842
什么是DOI,文献DOI怎么找? 1671749
邀请新用户注册赠送积分活动 800814
科研通“疑难数据库(出版商)”最低求助积分说明 759665