Nanoarchitectonics composite hydrogels with high toughness, mechanical strength, and self-healing capability for electrical actuators with programmable shape memory properties

自愈 材料科学 自愈水凝胶 执行机构 复合数 形状记忆合金 韧性 复合材料 透明度(行为) 计算机科学 高分子化学 计算机安全 医学 病理 人工智能 替代医学
作者
Yanqing Wang,Pengcheng Li,Shuting Cao,Yuetao Liu,Chuanhui Gao
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:15 (46): 18667-18677 被引量:4
标识
DOI:10.1039/d3nr03578f
摘要

Hydrogel materials show promise in various fields, including flexible electronic devices, biological tissue engineering and wound dressing. Nevertheless, the inadequate mechanical properties, recovery performance, and self-healing speed still constrain the development of intelligent hydrogel materials. To tackle these challenges, we designed a composite hydrogel with high mechanical strength, rapid self-recovery and efficient self-healing ability based on multiple synergistic effects. With the synergistic effect of hydrogen bonds, metal coordination bonds and electrostatic interaction, the synthesized hydrogel could reach a maximum tensile strength of 6.2 MPa and a toughness of 50 MJ m-3. The interaction between the weak polyelectrolyte polyethyleneimine and polyacrylic acid aided in improving the elasticity of the hydrogel, thereby endowing it with prompt self-recovery attributes. The multiple reversible effects also endowed the hydrogel with excellent self-healing ability, and the fractured hydrogel could achieve 95% self-healing within 4 h at room temperature. By the addition of glycerol, the hydrogel could also cope with a variety of extreme environments in terms of moisture retention (12 h, maintaining 80% of its water content) and freeze protection (-36.8 °C) properties. In addition, the composite hydrogels applied in the field of shape memory possessed programmable and reversible shape transformation properties. The polymer chains were entangled at high temperatures to achieve shape fixation, and shape memory was eliminated at low temperatures, which allowed the hydrogels to be reprogrammed and achieve multiple shape transitions. In addition, we also assemble composite hydrogels as actuators and robotic arms for intelligent applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
慧慧完成签到,获得积分20
3秒前
耍酷的剑身应助Tonald Yang采纳,获得10
4秒前
古炮发布了新的文献求助10
4秒前
4秒前
cloud完成签到,获得积分10
4秒前
倾听阳光完成签到 ,获得积分10
5秒前
6秒前
慧慧发布了新的文献求助10
8秒前
Sunny完成签到,获得积分10
8秒前
Jing完成签到 ,获得积分10
8秒前
ning_qing完成签到 ,获得积分10
9秒前
9秒前
纸条条完成签到 ,获得积分10
10秒前
霸气秀发布了新的文献求助10
11秒前
neverever完成签到,获得积分10
12秒前
碎冰蓝完成签到,获得积分10
12秒前
一米阳光发布了新的文献求助10
13秒前
crave完成签到 ,获得积分10
16秒前
早睡早起完成签到 ,获得积分10
16秒前
GLORIA完成签到,获得积分20
17秒前
量子星尘发布了新的文献求助10
19秒前
QS完成签到,获得积分10
19秒前
19秒前
lz完成签到,获得积分10
20秒前
tong童完成签到 ,获得积分10
21秒前
阿兹卡班长完成签到 ,获得积分10
23秒前
Karma应助jinyu采纳,获得10
23秒前
lililili完成签到,获得积分10
24秒前
yyy完成签到 ,获得积分10
24秒前
烟花应助文献来来来采纳,获得10
24秒前
mama完成签到 ,获得积分10
24秒前
Zurlliant完成签到,获得积分10
26秒前
黄橙子完成签到 ,获得积分10
26秒前
SDNUDRUG完成签到,获得积分10
28秒前
天明完成签到,获得积分10
29秒前
QQLL完成签到,获得积分10
32秒前
32秒前
34秒前
raibow9814完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4280743
求助须知:如何正确求助?哪些是违规求助? 3808658
关于积分的说明 11929641
捐赠科研通 3455893
什么是DOI,文献DOI怎么找? 1895244
邀请新用户注册赠送积分活动 944496
科研通“疑难数据库(出版商)”最低求助积分说明 848291