Heterogeneous Graph Contrastive Learning With Metapath-Based Augmentations

计算机科学 图形 人工智能 自然语言处理 理论计算机科学
作者
Xiaoru Chen,Yingxu Wang,Jinyuan Fang,Zaiqiao Meng,Shangsong Liang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 1003-1014 被引量:5
标识
DOI:10.1109/tetci.2023.3322341
摘要

Heterogeneous graph contrastive learning is an effective method to learn discriminative representations of nodes in heterogeneous graph when the labels are absent. To utilize metapath in contrastive learning process, previous methods always construct multiple metapath-based graphs from the original graph with metapaths, then perform data augmentation and contrastive learning on each graph respectively. However, this paradigm suffers from three defects: 1) It does not consider the augmentation scheme on the whole metapath-based graph set, which hinders them from fully leveraging the information of metapath-based graphs to achieve better performance. 2) The final node embeddings are not optimized from the contrastive objective directly, so they are not guaranteed to be distinctive enough. It leads to suboptimal performance on downstream tasks. 3) Its computational complexity for contrastive objective is high. To tackle these defects, we propose a H eterogeneous G raph C ontrastive learning model with M etapath-based A ugmentations ( HGCMA ), which is designed for downstream tasks with a small amount of labeled data. To address the first defect, both semantic-level and node-level augmentation schemes are proposed in our HGCMA for augmentation, where a metapath-based graph and a certain ratio of edges in each metapath-based graph are randomly masked, respectively. To address the second and third defects, we utilize a two-stage attention aggregation graph encoder to output final node embedding and optimize them with contrastive objective directly. Extensive experiments on three public datasets validate the effectiveness of HGCMA when compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助旅途之人采纳,获得10
3秒前
Cindy发布了新的文献求助10
3秒前
4秒前
完美世界应助卡皮巴拉yuan采纳,获得10
5秒前
Lucas应助yyh12138采纳,获得10
10秒前
小蘑菇应助缓慢又蓝采纳,获得20
10秒前
10秒前
111发布了新的文献求助10
11秒前
12秒前
旅途之人完成签到,获得积分10
13秒前
14秒前
15秒前
Mao完成签到,获得积分10
16秒前
脑洞疼应助山山而川采纳,获得10
17秒前
水灯霖发布了新的文献求助30
18秒前
Echo1128完成签到 ,获得积分10
18秒前
Accept2024发布了新的文献求助30
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
天天快乐应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
21秒前
安静的飞珍完成签到,获得积分10
23秒前
24秒前
26秒前
奋斗藏花发布了新的文献求助10
26秒前
川上富江发布了新的文献求助10
26秒前
科研通AI5应助111采纳,获得10
26秒前
飘逸的麦片完成签到,获得积分10
28秒前
29秒前
HPP123完成签到,获得积分10
30秒前
多情的青烟完成签到,获得积分20
31秒前
吉吉完成签到,获得积分10
31秒前
自然黄豆应助洁净之柔采纳,获得10
32秒前
33秒前
桐桐应助伶俐老头采纳,获得10
36秒前
38秒前
自然黄豆发布了新的文献求助10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844