峰度
贝叶斯概率
贝叶斯定理
计算机科学
选择(遗传算法)
选型
统计推断
贝叶斯推理
先验概率
频数推理
区间(图论)
数学
机器学习
统计
人工智能
组合数学
作者
Stephen G. Walker,Eduardo Gutiérrez‐Peña
出处
期刊:Oxford University Press eBooks
[Oxford University Press]
日期:1999-08-12
卷期号:: 685-710
被引量:29
标识
DOI:10.1093/oso/9780198504856.003.0030
摘要
Abstract In this paper we discuss two approaches to robustifying standard Bayesian procedures. The first involves regarding common statistical problems as decision problems where the ‘relevant unknown’ is modelled nonparametrically. Problems considered include model selection, empirical Bayes inference and interval estimation. In particular we generalise a model selection criterion of San Martini and Spezzaferri (1984). The second approach is based on suitable generalisations of well-known densities. For example, we generalise the standard normal density to include both skewness and kurtosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI