A Novel Improved Variational Mode Decomposition-Temporal Convolutional Network-Gated Recurrent Unit with Multi-Head Attention Mechanism for Enhanced Photovoltaic Power Forecasting

光伏系统 计算机科学 卷积神经网络 可再生能源 人工智能 循环神经网络 人工神经网络 数据挖掘 工程类 电气工程
作者
Hua Fu,Junnan Zhang,Sen Xie
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (10): 1837-1837 被引量:5
标识
DOI:10.3390/electronics13101837
摘要

Photovoltaic (PV) power forecasting plays a crucial role in optimizing renewable energy integration into the grid, necessitating accurate predictions to mitigate the inherent variability of solar energy generation. We propose a novel forecasting model that combines improved variational mode decomposition (IVMD) with the temporal convolutional network-gated recurrent unit (TCN-GRU) architecture, enriched with a multi-head attention mechanism. By focusing on four key environmental factors influencing PV output, the proposed IVMD-TCN-GRU framework targets a significant research gap in renewable energy forecasting methodologies. Initially, leveraging the sparrow search algorithm (SSA), we optimize the parameters of VMD, including the mode component K-value and penalty factor, based on the minimum envelope entropy principle. The optimized VMD then decomposes PV power, while the TCN-GRU model harnesses TCN’s proficiency in learning local temporal features and GRU’s capability in rapidly modeling sequence data, while leveraging multi-head attention to better utilize the global correlation information within sequence data. Through this design, the model adeptly captures the correlations within time series data, demonstrating superior performance in prediction tasks. Subsequently, the SSA is employed to optimize GRU parameters, and the decomposed PV power mode components and environmental feature attributes are inputted into the TCN-GRU neural network. This facilitates dynamic temporal modeling of multivariate feature sequences. Finally, the predicted values of each component are summed to realize PV power forecasting. Validation using real data from a PV station corroborates that the novel model demonstrates a substantial reduction in RMSE and MAE of up to 55.1% and 54.5%, respectively, particularly evident in instances of pronounced photovoltaic power fluctuations during inclement weather conditions. The proposed method exhibits marked improvements in accuracy compared to traditional PV power prediction methods, underscoring its significance in enhancing forecasting precision and ensuring the secure scheduling and stable operation of power systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
GGB完成签到,获得积分10
2秒前
深情安青应助科研通管家采纳,获得10
3秒前
hwx应助科研通管家采纳,获得20
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
土豆酱完成签到,获得积分10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
若雨凌风应助科研通管家采纳,获得20
3秒前
3秒前
Owen应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
lene应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
revo完成签到,获得积分10
4秒前
大个应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
科研助手6应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
若雨凌风应助科研通管家采纳,获得20
4秒前
JamesPei应助yangliu071998采纳,获得10
4秒前
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
zzx发布了新的文献求助10
4秒前
4秒前
故酒应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
5秒前
oaixlittle完成签到,获得积分10
5秒前
5秒前
5秒前
pongpog123完成签到,获得积分10
6秒前
善学以致用应助gy采纳,获得10
6秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820576
求助须知:如何正确求助?哪些是违规求助? 3363504
关于积分的说明 10422977
捐赠科研通 3081912
什么是DOI,文献DOI怎么找? 1695276
邀请新用户注册赠送积分活动 815042
科研通“疑难数据库(出版商)”最低求助积分说明 768819