Multilayer restoration in IP-Optical networks by adjustable robust optimization and deep reinforcement learning

计算机科学 强化学习 控制重构 稳健优化 计算机网络 软件定义的网络 稳健性(进化) 光网络 光IP交换 分布式计算 因特网协议 互联网 人工智能 波分复用 数学优化 嵌入式系统 波长 生物化学 化学 物理 数学 光电子学 万维网 基因
作者
M. Ali Bekri,Ronald Romero Reyes,Thomas Bauschert
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:16 (7): 721-721
标识
DOI:10.1364/jocn.523894
摘要

Today, IP-Optical networks apply IP restoration as the default strategy to recover IP traffic from optical failures. This strategy has been preferred over optical restoration as it circumvents the lengthy delays involved in the reconfiguration of the optical layer. Although fast, IP restoration requires the overprovisioning of costly capacity to cope with optical failures. The advent of software-defined optical networking enables a changeover towards more efficient methods that integrate IP-Optical restoration. These methods should not only restore traffic from failures considered in the planning phase, but they should also efficiently restore traffic from unforeseen failures. This paper studies this problem by investigating optimization algorithms for capacity planning and multilayer restoration based on the theory of adjustable robust optimization (ARO). The approach performs offline optimization of the capacities of IP links as well as the routing and capacities of IP tunnels in both failure-free mode of operation and in a foreseen set of optical failures. Besides, the approach optimizes an affine policy that is applied online to recover IP traffic from unforeseen failures, thereby providing robustness to optical failures not regarded in the planning phase. To overcome the limitations of the affine policy, an alternative robust algorithm is formulated based on deep reinforcement learning (DRL) and graph neural networks (GNNs). By training a DRL-GNN agent, the performance of the restoration process is improved by further minimizing the traffic losses when unforeseen optical failures occur. Results in selected scenarios show that the algorithms outperform IP restoration in terms of capacity requirements, while minimizing the traffic losses in the case of failures. Moreover, the DRL-GNN method significantly improves the ARO-based affine algorithm, which shows the capability of learning the complex relationship between the capacity impairments caused by optical failures and the routing strategy required to restore IP traffic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白发布了新的文献求助10
1秒前
妮妮发布了新的文献求助10
1秒前
妙海完成签到,获得积分10
1秒前
猪猪hero发布了新的文献求助10
3秒前
内向的道天完成签到,获得积分10
4秒前
4秒前
是萱萱鸭完成签到,获得积分10
6秒前
粥粥完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助150
7秒前
7秒前
努力发布了新的文献求助20
8秒前
8秒前
浮游应助佳琳子采纳,获得10
9秒前
在水一方应助BLESSING采纳,获得10
10秒前
Mammon完成签到 ,获得积分10
10秒前
11秒前
sunny心晴完成签到 ,获得积分10
13秒前
13秒前
13秒前
朴素小翠完成签到,获得积分10
14秒前
Lucas应助万物更始采纳,获得10
14秒前
幸福小蜜蜂完成签到 ,获得积分10
15秒前
Akim应助猪猪hero采纳,获得10
16秒前
yang发布了新的文献求助10
16秒前
orixero应助真实的沛山采纳,获得10
17秒前
Jeamren完成签到,获得积分10
18秒前
19秒前
李贝川完成签到,获得积分10
20秒前
佳琳子完成签到,获得积分10
21秒前
yufey完成签到 ,获得积分10
22秒前
LT完成签到,获得积分10
23秒前
在水一方应助yang采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
shjcold完成签到,获得积分10
29秒前
孟愿完成签到,获得积分10
29秒前
29秒前
三硕发布了新的文献求助30
32秒前
白告羊羽完成签到 ,获得积分10
32秒前
猪猪hero发布了新的文献求助10
33秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011767
求助须知:如何正确求助?哪些是违规求助? 4253087
关于积分的说明 13253021
捐赠科研通 4055784
什么是DOI,文献DOI怎么找? 2218391
邀请新用户注册赠送积分活动 1227979
关于科研通互助平台的介绍 1150238