Side-Scan Sonar Underwater Target Detection: Combining the Diffusion Model With an Improved YOLOv7 Model

侧扫声纳 声纳 水下 声学 扩散 合成孔径声纳 水声学 计算机科学 声纳信号处理 海洋工程 工程类 地质学 信号处理 物理 电信 海洋学 雷达 热力学
作者
Xin Wen,Feihu Zhang,Chensheng Cheng,Xujia Hou,Guang Pan
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:49 (3): 976-991 被引量:1
标识
DOI:10.1109/joe.2024.3379481
摘要

Side-scan sonar (SSS) plays a crucial role in underwater exploration. Autonomous analysis of SSS images is vital for detecting unknown targets in underwater environments. However, due to the complexity of the underwater environment, few highlighted areas of the target, blurred feature details, and the difficulty of collecting data from SSS, achieving high-precision autonomous target recognition in SSS images is challenging. This article solves this problem by improving the You Only Look Once v7 (YOLOv7) model to achieve high-precision object detection in SSS images. First, we enhance and enlarge real and experimental images using the denoising–diffusion model to establish a self-made SSS image data set, as there are data pictures of the detection target in the SSS images obtained from real experiments. Since the SSS image has large areas without targets, this article introduces a vision transformer (ViT) for dynamic attention and global modeling, which improves the model's weight in the target region. Second, the convolutional block attention module is adopted to further improve the feature expression ability and reduce floating-point operations. Finally, this article uses Scylla-Intersection over Union as the loss function to increase the accuracy of the model's inference. Experiments on the SSS image data set demonstrate that the improved YOLOv7 model outperforms other technologies, with an average accuracy (mAP0.5) and (mAP0.5:0.95) of 78.00% and 48.11%, respectively. These results are 3.47% and 2.9% higher than the YOLOv7 model. The improved YOLOv7 algorithm proposed in this article has great potential for object detection and recognition of SSS images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不吃香菜完成签到,获得积分10
1秒前
残雪发布了新的文献求助10
1秒前
1秒前
张小馨完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
郑大钱发布了新的文献求助10
2秒前
2秒前
阳光的雪碧完成签到,获得积分10
3秒前
铱铱的胡萝卜完成签到,获得积分10
3秒前
不许冒饭发布了新的文献求助10
3秒前
科目三应助失眠的灵寒采纳,获得10
3秒前
王佳鑫发布了新的文献求助10
4秒前
4秒前
favoury发布了新的文献求助30
4秒前
领导范儿应助elfff采纳,获得10
4秒前
4秒前
4秒前
eric888应助Charlie采纳,获得30
5秒前
5秒前
优美元枫发布了新的文献求助10
5秒前
5秒前
人间打气筒完成签到,获得积分10
5秒前
华华完成签到,获得积分20
5秒前
5秒前
laojian发布了新的文献求助10
5秒前
5秒前
小小发布了新的文献求助30
6秒前
刘雪发布了新的文献求助30
6秒前
aaronpancn发布了新的文献求助10
7秒前
晨Zhi完成签到,获得积分10
8秒前
hoyden完成签到,获得积分10
8秒前
8秒前
nana发布了新的文献求助30
9秒前
科研NM发布了新的文献求助20
9秒前
9秒前
9秒前
我是老大应助1111采纳,获得10
9秒前
666完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071427
求助须知:如何正确求助?哪些是违规求助? 4292111
关于积分的说明 13373408
捐赠科研通 4112841
什么是DOI,文献DOI怎么找? 2252088
邀请新用户注册赠送积分活动 1257155
关于科研通互助平台的介绍 1189893