Distributed constrained combinatorial optimization leveraging hypergraph neural networks

超图 计算机科学 人工神经网络 人工智能 数学 组合数学
作者
Nasimeh Heydaribeni,Xinrui Zhan,Ruisi Zhang,Tina Eliassi‐Rad,Farinaz Koushanfar
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:6 (6): 664-672 被引量:3
标识
DOI:10.1038/s42256-024-00833-7
摘要

Scalable addressing of high-dimensional constrained combinatorial optimization problems is a challenge that arises in several science and engineering disciplines. Recent work introduced novel applications of graph neural networks for solving quadratic-cost combinatorial optimization problems. However, effective utilization of models such as graph neural networks to address general problems with higher-order constraints is an unresolved challenge. This paper presents a framework, HypOp, that advances the state of the art for solving combinatorial optimization problems in several aspects: (1) it generalizes the prior results to higher-order constrained problems with arbitrary cost functions by leveraging hypergraph neural networks; (2) it enables scalability to larger problems by introducing a new distributed and parallel training architecture; (3) it demonstrates generalizability across different problem formulations by transferring knowledge within the same hypergraph; (4) it substantially boosts the solution accuracy compared with the prior art by suggesting a fine-tuning step using simulated annealing; and (5) it shows remarkable progress on numerous benchmark examples, including hypergraph MaxCut, satisfiability and resource allocation problems, with notable run-time improvements using a combination of fine-tuning and distributed training techniques. We showcase the application of HypOp in scientific discovery by solving a hypergraph MaxCut problem on a National Drug Code drug-substance hypergraph. Through extensive experimentation on various optimization problems, HypOp demonstrates superiority over existing unsupervised-learning-based solvers and generic optimization methods. Bolstering the broad and deep applicability of graph neural networks, Heydaribeni et al. introduce HypOp, a framework that uses hypergraph neural networks to solve general constrained combinatorial optimization problems. The presented method scales and generalizes well, improves accuracy and outperforms existing solvers on various benchmarking examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
文静秋双完成签到,获得积分10
1秒前
1秒前
WaveletZ完成签到,获得积分10
2秒前
可爱的盼晴完成签到,获得积分10
2秒前
周小鱼发布了新的文献求助10
2秒前
老实易蓉应助piaoaxi采纳,获得20
2秒前
东东有点樊完成签到,获得积分10
2秒前
3秒前
3秒前
夏末发布了新的文献求助10
4秒前
开放惜寒完成签到,获得积分10
4秒前
4秒前
在水一方应助凝凝小采纳,获得10
5秒前
pbj发布了新的文献求助10
5秒前
6秒前
6秒前
灵巧的之瑶完成签到,获得积分20
6秒前
7秒前
7秒前
DrLecter完成签到,获得积分10
7秒前
梦里格斗家完成签到,获得积分10
7秒前
坦率邪欢完成签到,获得积分10
7秒前
xxxd完成签到,获得积分10
7秒前
耍酷糜完成签到 ,获得积分10
7秒前
bkagyin应助zhangman采纳,获得10
8秒前
8秒前
Dawn完成签到 ,获得积分10
8秒前
隐形曼青应助唐磊采纳,获得10
8秒前
人来人往发布了新的文献求助10
8秒前
8秒前
lehha完成签到,获得积分10
8秒前
9秒前
秦川发布了新的文献求助10
9秒前
科研通AI5应助pbj采纳,获得10
10秒前
科研通AI5应助LSS采纳,获得10
10秒前
10秒前
luwenxuan完成签到,获得积分10
11秒前
Jenny712发布了新的文献求助10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813277
求助须知:如何正确求助?哪些是违规求助? 3357756
关于积分的说明 10388193
捐赠科研通 3074954
什么是DOI,文献DOI怎么找? 1689097
邀请新用户注册赠送积分活动 812548
科研通“疑难数据库(出版商)”最低求助积分说明 767178