Diagnosis of atrial fibrillation based on lightweight detail-semantic network

计算机科学 路径(计算) 卷积神经网络 计算复杂性理论 人工智能 概化理论 卷积(计算机科学) 模式识别(心理学) 数据挖掘 算法 人工神经网络 统计 数学 程序设计语言
作者
Yongjian Li,Meng Chen,Ying Wang,Yesong Liang,Shoushui Wei
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 105025-105025 被引量:2
标识
DOI:10.1016/j.bspc.2023.105025
摘要

Atrial fibrillation has become an important disease that threatens people's health. Wearable long-range dynamic ECG signals are effective means to screen for AF, but the complexity of existing algorithms limits the integration of signal acquisition and analysis in wearable ECG monitors. Developing an algorithm that satisfies the computational power of low-end chips is the key to the problem. In this paper, we propose a lightweight detail-semantic network (LDS Net) consisting of detail path, semantic path, and an improved cross-guidance mechanism. The detail path uses multiple layers of depthwise separable convolution to extract deep information about AF, the semantic path uses hourglass residual modules to compensate for the disadvantage of obstructed information flow of depthwise separable convolution, and an improved cross-guidance mechanism uses the idea of mutual guidance to achieve information fusion between the detail path and the semantic path. The network has only 0.2 M parametric count and 327.36 M computational volume. It achieves 99.57% accuracy on the MIT-BIH Atrial Fibrillation Database and 90.89% accuracy on the clinical dataset. The results show that LDS Net is significantly better than the classical convolutional neural network in terms of computational cost and accuracy, and has good clinical application prospects and generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助昏睡的念之采纳,获得10
1秒前
王大宝宝宝完成签到 ,获得积分10
2秒前
WZ完成签到,获得积分10
3秒前
陶世立完成签到 ,获得积分10
3秒前
花无双完成签到,获得积分0
3秒前
4秒前
7秒前
科研通AI5应助Fin2046采纳,获得10
9秒前
11秒前
传奇3应助gyd采纳,获得10
11秒前
12秒前
科研通AI5应助Solar energy采纳,获得10
13秒前
蓝色发布了新的文献求助10
13秒前
Jasper应助研友_8yN60L采纳,获得10
14秒前
江峰发布了新的文献求助10
17秒前
乔123完成签到,获得积分10
17秒前
empty发布了新的文献求助10
19秒前
20秒前
22秒前
常佳楠完成签到,获得积分10
23秒前
23秒前
七碗茶发布了新的文献求助10
23秒前
小二郎应助妩媚的魂幽采纳,获得10
24秒前
常佳楠发布了新的文献求助10
26秒前
科研通AI5应助江峰采纳,获得10
26秒前
蓝色发布了新的文献求助10
26秒前
研友_8yN60L发布了新的文献求助10
27秒前
Akim应助大劲采纳,获得10
27秒前
Twilight完成签到,获得积分10
30秒前
七碗茶完成签到,获得积分10
31秒前
核桃应助司徒寒烟采纳,获得10
32秒前
班小班完成签到,获得积分10
32秒前
pentjy完成签到,获得积分10
32秒前
32秒前
33秒前
研友_8yN60L完成签到,获得积分10
33秒前
34秒前
36秒前
稳重初翠发布了新的文献求助10
36秒前
小马甲应助七碗茶采纳,获得10
37秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799095
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321650
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680100
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445