Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) for color-patterned fabric defect detection

人工智能 编码器 棱锥(几何) 计算机科学 分割 模式识别(心理学) 计算机视觉 联营 残余物 算法 数学 几何学 操作系统
作者
Hongwei Zhang,Shihao Wang,Shuai Lu,Le Yao,Yibo Hu
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:93 (15-16): 3459-3477 被引量:22
标识
DOI:10.1177/00405175221149450
摘要

Color-patterned fabrics possess changeable patterns, low probability of defective samples, and various forms of defects. Therefore, the unsupervised inspection of color-patterned fabrics has gradually become a research hotspot in the field of fabric defect detection. However, due to the redundant information of skip connections in the network and the limitation of post-processing, the current reconstruction-based unsupervised fabric defect detection methods have difficulty in detecting some defects of color-patterned fabrics. In this article, we propose an Attention-Gate-based U-shaped Reconstruction Network (AGUR-Net) and a dual-threshold segmentation post-processing method. AGUR-Net consists of an encoder, an Atrous Spatial Pyramid Pooling module and an attention gate weighted fusion residual decoder. The encoder is used to obtain more representative features of the input image via EfficientNet-B2. The Atrous Spatial Pyramid Pooling module is used to enlarge the receptive field of the network and introduce multi-scale information into the decoder. The attention-gate-weighted residual fusion decoder is used to fuse the features of the encoder with the features of the decoder to obtain the reconstructed image. The dual-threshold segmentation post-processing is used to obtain the final defect detection results. Our method achieves a precision of 59.38%, a recall of 59.1%, an F1 of 54.31%, and an intersection-over-union ratio of 41.18% on the public dataset YDFID-1. The experimental results show that the proposed method can better detect and locate the defects of color-patterned fabrics compared with several other state-of-the-art unsupervised fabric defect detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助cuifeng采纳,获得30
刚刚
suiyi发布了新的文献求助10
1秒前
科研通AI5应助笨笨忘幽采纳,获得10
2秒前
4秒前
传奇3应助AKK采纳,获得10
4秒前
7秒前
HY完成签到 ,获得积分10
7秒前
李健应助leoluo采纳,获得10
8秒前
9秒前
深情安青应助宋晓静采纳,获得10
9秒前
Nancy发布了新的文献求助10
9秒前
Duke_ethan完成签到,获得积分10
12秒前
12秒前
tcf完成签到,获得积分10
13秒前
纪间完成签到,获得积分10
14秒前
卓初露完成签到 ,获得积分10
19秒前
20秒前
oysp完成签到,获得积分10
22秒前
25秒前
无花果应助upandcoming采纳,获得10
25秒前
GreenT完成签到,获得积分10
26秒前
LL发布了新的文献求助10
26秒前
_ban完成签到 ,获得积分10
26秒前
Solarenergy完成签到,获得积分0
30秒前
xieji发布了新的文献求助10
31秒前
小文殊完成签到 ,获得积分10
31秒前
31秒前
32秒前
32秒前
蓝桉发布了新的文献求助30
36秒前
科研通AI5应助fjyk采纳,获得30
36秒前
AKK发布了新的文献求助10
37秒前
leoluo发布了新的文献求助10
37秒前
zlx发布了新的文献求助10
37秒前
41秒前
duotianzhiyi完成签到,获得积分10
42秒前
45秒前
hcjxj完成签到,获得积分10
45秒前
zlx完成签到,获得积分10
46秒前
tutuee完成签到,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779389
求助须知:如何正确求助?哪些是违规求助? 3324920
关于积分的说明 10220490
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522