生物材料
细胞生物学
破骨细胞
化学
骨化
间充质干细胞
1-磷酸鞘氨醇
异位骨化
医学
解剖
鞘氨醇
生物
生物化学
受体
有机化学
作者
Yan Wu,Dan Li,Mingzheng Li
标识
DOI:10.1016/j.mehy.2023.111033
摘要
Current studies have identified that biomaterials in the form of sintered calcium phosphate (CaP) ceramics with specific physicochemical properties can induce bone formation in heterotopic sites without additional cells or growth factors, termed osteoinductive biomaterials, which display great potential in repairing large segmental bone defects. However, the underlying mechanism of osteoinduction remains elusive, preventing the optimal design of biomaterials with better osteogenic potential. Recently, accumulative evidence has illustrated that osteoclasts could recruit mesenchymal stem cells (MSCs) and enhance osteogenic differentiation of MSCs by secreting various cytokines, such as collagen triple helix repeat containing 1 (CTHRC1), sphingosine-1-phosphate (S1P), and complement factor 3a (C3a) during bone remodeling. Interestingly, a recent study found that osteoclastogenesis occurred prior to the bone formation during biomaterial-induced ectopic bone formation, and bone formation was blocked once osteoclastogenesis was inhibited with the anti-RANKL antibody at the early stage, which suggest that osteoclasts may play a critical role in the osteoinduction. However, whether osteoclasts could initiate biomaterial-induced ectopic bone formation remains unclear. Consequently, for the first time, we hypothesize that osteoclasts formed in non-osseous environments are perceived as a “starting signal” and osteoclastogenesis is the initiator of biomaterial-induced ectopic bone formation, which may provide useful instruction for osteoinductive materials modification and benefit the development of treatment strategies for heterotopic ossification (HO) in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI