A Comprehensive Survey of Image Augmentation Techniques for Deep Learning

计算机科学 人工智能 深度学习 机器学习 图像(数学) 任务(项目管理) 图像处理 管理 经济
作者
Mingle Xu,Sook Yoon,Alvaro Fuentes,Dong Sun Park
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:137: 109347-109347 被引量:259
标识
DOI:10.1016/j.patcog.2023.109347
摘要

Although deep learning has achieved satisfactory performance in computer vision, a large volume of images is required. However, collecting images is often expensive and challenging. Many image augmentation algorithms have been proposed to alleviate this issue. Understanding existing algorithms is, therefore, essential for finding suitable and developing novel methods for a given task. In this study, we perform a comprehensive survey of image augmentation for deep learning using a novel informative taxonomy. To examine the basic objective of image augmentation, we introduce challenges in computer vision tasks and vicinity distribution. The algorithms are then classified among three categories: model-free, model-based, and optimizing policy-based. The model-free category employs the methods from image processing, whereas the model-based approach leverages image generation models to synthesize images. In contrast, the optimizing policy-based approach aims to find an optimal combination of operations. Based on this analysis, we believe that our survey enhances the understanding necessary for choosing suitable methods and designing novel algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17852573662完成签到,获得积分10
刚刚
研友_nV2ROn完成签到,获得积分10
1秒前
慕青应助han采纳,获得10
1秒前
羊_应助珂学家采纳,获得10
1秒前
斯文富完成签到,获得积分20
1秒前
杨yyyy完成签到,获得积分10
2秒前
kk发布了新的文献求助10
2秒前
搜集达人应助笨笨晓蓝采纳,获得10
3秒前
挑挑发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
dominate发布了新的文献求助10
4秒前
周三小圆桌完成签到,获得积分10
5秒前
林途发布了新的文献求助10
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
Yxy2021完成签到,获得积分10
6秒前
所所应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
不懈奋进应助科研通管家采纳,获得30
7秒前
ding应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
温暖幻桃发布了新的文献求助10
7秒前
7秒前
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
飞云发布了新的文献求助10
7秒前
许甜甜鸭应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838141
求助须知:如何正确求助?哪些是违规求助? 3380447
关于积分的说明 10514320
捐赠科研通 3100011
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821593
科研通“疑难数据库(出版商)”最低求助积分说明 772797