清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A New U-Net Speech Enhancement Framework Based on Correlation Characteristics of Speech

语音增强 语音识别 计算机科学 语音处理 相关性 网(多面体) 语音活动检测 人工智能 数学 降噪 几何学
作者
Lijun Zhang,Kaikun Pei,Wenbo Li,Dejian Meng,Yikang He
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2015
摘要

<div class="section abstract"><div class="htmlview paragraph">As a key component of in-vehicle intelligent voice technology, speech enhancement can extract clean speech signals contaminated by environmental noise to improve the perceptual quality and intelligibility of speech. It has extensive applications in the field of intelligent car cabins. Although some end-to-end speech enhancement methods based on time domain have been proposed, there is often limited consideration given to designing model architectures based on the characteristics of the speech signal. In this paper, we propose a new U-Net based speech enhancement framework that utilizes the temporal correlation of speech signals to reconstruct higher-quality and more intelligible clean speech. Firstly, to address the issue of inadequate extraction of multi-scale correlation features from speech signals during feature extraction and reconstruction, a novel dense connection multi-scale feature extraction module based on gated dilated convolution is devised to enhance temporal receptive length and extract diverse scale features effectively. Secondly, in order to tackle the problem of feature loss and harmonic distortion during sampling, a sophisticated pooling-reconstruction fine-grained sampling method based on feature map recombination is proposed. This method aims to minimize information loss during down-sampling while simultaneously enhancing the clarity of reconstructed waveforms during up-sampling. Lastly, leveraging the aforementioned pooling-reconstruction sampling method, we propose a deep supervision approach for multi-scale feature. This approach effective supervision of perception characteristics across different frequency ranges. In order to validate the effectiveness of the proposed framework, experiments were conducted on the Voicebank+Demand dataset. The results show that compared to other advanced algorithms, the proposed model significantly improves metrics such as PESQ, STOI, CSIG, CBAK, and COVL. Even in low SNR environments, the enhanced speech signals exhibit noticeable improvements in quality and intelligibility. This is beneficial for subsequent automotive voice applications.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枯藤老柳树完成签到,获得积分10
2秒前
juan完成签到 ,获得积分10
59秒前
israr完成签到,获得积分10
1分钟前
1分钟前
伯赏尔云完成签到,获得积分20
1分钟前
1分钟前
xtt完成签到,获得积分10
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
4分钟前
云裳发布了新的文献求助10
4分钟前
foyefeng完成签到 ,获得积分10
4分钟前
4分钟前
羞涩的西牛完成签到 ,获得积分10
4分钟前
云裳完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
鱼儿游啊游完成签到,获得积分10
7分钟前
yueyangyin完成签到,获得积分10
7分钟前
SciGPT应助鱼儿游啊游采纳,获得10
7分钟前
Hiram完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
香蕉觅云应助科研通管家采纳,获得10
7分钟前
星辰大海应助Yvon采纳,获得10
7分钟前
7分钟前
英俊的铭应助Daria采纳,获得10
7分钟前
7分钟前
8分钟前
宇文非笑完成签到 ,获得积分10
8分钟前
8分钟前
白昼の月完成签到 ,获得积分0
8分钟前
8分钟前
8分钟前
Okypete发布了新的文献求助10
8分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
8分钟前
9分钟前
100完成签到,获得积分10
9分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906913
求助须知:如何正确求助?哪些是违规求助? 3452364
关于积分的说明 10870181
捐赠科研通 3178230
什么是DOI,文献DOI怎么找? 1755838
邀请新用户注册赠送积分活动 849121
科研通“疑难数据库(出版商)”最低求助积分说明 791370