亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving accuracy of vascular access quality classification in hemodialysis patients using deep learning with K highest score feature selection

特征选择 特征(语言学) 人工智能 医学 血液透析 深度学习 卷积神经网络 选择(遗传算法) 模式识别(心理学) 人工神经网络 试验装置 计算机科学 机器学习 数据挖掘 外科 哲学 语言学
作者
Sarayut Julkaew,Thakerng Wongsirichot,Kasikrit Damkliang,Pornpen Sangthawan
出处
期刊:Journal of International Medical Research [SAGE Publishing]
卷期号:52 (4)
标识
DOI:10.1177/03000605241232519
摘要

Objective To develop and evaluate a novel feature selection technique, using photoplethysmography (PPG) sensors, for enhancing the performance of deep learning models in classifying vascular access quality in hemodialysis patients. Methods This cross-sectional study involved creating a novel feature selection method based on SelectKBest principles, specifically designed to optimize deep learning models for PPG sensor data, in hemodialysis patients. The method effectiveness was assessed by comparing the performance of multiple deep learning models using the feature selection approach versus complete feature set. The model with the highest accuracy was then trained and tested using a 70:30 approach, respectively, with the full dataset and the SelectKBest dataset. Performance results were compared using Student’s paired t-test. Results Data from 398 hemodialysis patients were included. The 1-dimensional convolutional neural network (CNN1D) displayed the highest accuracy among different models. Implementation of the SelectKBest-based feature selection technique resulted in a statistically significant improvement in the CNN1D model’s performance, achieving an accuracy of 92.05% (with feature selection) versus 90.79% (with full feature set). Conclusion These findings suggest that the newly developed feature selection approach might aid in accurately predicting vascular access quality in hemodialysis patients. This advancement may contribute to the development of reliable diagnostic tools for identifying vascular complications, such as stenosis, potentially improving patient outcomes and their quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
14秒前
鬼见愁应助瘦瘦毛豆采纳,获得10
18秒前
传奇3应助哦哟采纳,获得10
30秒前
49秒前
鬼见愁应助不是吴彦祖喔采纳,获得10
53秒前
脑洞疼应助瘦瘦毛豆采纳,获得10
59秒前
1分钟前
hcsdgf完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
瘦瘦毛豆发布了新的文献求助10
1分钟前
1分钟前
邢丽丽完成签到,获得积分20
1分钟前
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
2分钟前
吃的饭广泛完成签到,获得积分10
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
2分钟前
hanabi完成签到,获得积分10
2分钟前
高灿完成签到 ,获得积分10
3分钟前
Bowman发布了新的文献求助30
3分钟前
3分钟前
科目三应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Xdz完成签到 ,获得积分10
4分钟前
4分钟前
ch发布了新的文献求助10
4分钟前
kuoping完成签到,获得积分0
4分钟前
笨笨的芹菜完成签到 ,获得积分10
5分钟前
鬼见愁完成签到,获得积分0
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Battery Management Systems, Volume lll: Physics-Based Methods 550
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4136456
求助须知:如何正确求助?哪些是违规求助? 3673191
关于积分的说明 11611462
捐赠科研通 3368339
什么是DOI,文献DOI怎么找? 1850450
邀请新用户注册赠送积分活动 913819
科研通“疑难数据库(出版商)”最低求助积分说明 828941