亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FedDiv: Collaborative Noise Filtering for Federated Learning with Noisy Labels

噪音(视频) 计算机科学 协同过滤 人工智能 万维网 推荐系统 图像(数学)
作者
Jichang Li,Guanbin Li,Hui Cheng,Zicheng Liao,Yizhou Yu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (4): 3118-3126 被引量:7
标识
DOI:10.1609/aaai.v38i4.28095
摘要

Federated Learning with Noisy Labels (F-LNL) aims at seeking an optimal server model via collaborative distributed learning by aggregating multiple client models trained with local noisy or clean samples. On the basis of a federated learning framework, recent advances primarily adopt label noise filtering to separate clean samples from noisy ones on each client, thereby mitigating the negative impact of label noise. However, these prior methods do not learn noise filters by exploiting knowledge across all clients, leading to sub-optimal and inferior noise filtering performance and thus damaging training stability. In this paper, we present FedDiv to tackle the challenges of F-LNL. Specifically, we propose a global noise filter called Federated Noise Filter for effectively identifying samples with noisy labels on every client, thereby raising stability during local training sessions. Without sacrificing data privacy, this is achieved by modeling the global distribution of label noise across all clients. Then, in an effort to make the global model achieve higher performance, we introduce a Predictive Consistency based Sampler to identify more credible local data for local model training, thus preventing noise memorization and further boosting the training stability. Extensive experiments on CIFAR-10, CIFAR-100, and Clothing1M demonstrate that FedDiv achieves superior performance over state-of-the-art F-LNL methods under different label noise settings for both IID and non-IID data partitions. Source code is publicly available at https://github.com/lijichang/FLNL-FedDiv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得30
4秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
9秒前
22秒前
31秒前
量子星尘发布了新的文献求助10
39秒前
44秒前
1分钟前
karstbing发布了新的文献求助10
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
Achuia完成签到,获得积分10
3分钟前
3分钟前
程若男完成签到,获得积分10
3分钟前
小唐完成签到,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
汉堡包应助Fairy采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Akim应助lngenuo采纳,获得30
4分钟前
5分钟前
5分钟前
5分钟前
Wei发布了新的文献求助10
5分钟前
5分钟前
Fairy发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714938
求助须知:如何正确求助?哪些是违规求助? 5228707
关于积分的说明 15273909
捐赠科研通 4866079
什么是DOI,文献DOI怎么找? 2612676
邀请新用户注册赠送积分活动 1562848
关于科研通互助平台的介绍 1520139