Multi-center Dose Prediction Using Attention-aware Deep learning Algorithm Based on Transformers for Cervical Cancer Radiotherapy

医学 宫颈癌 放射治疗 医学物理学 机器学习 算法 人工智能 内科学 放射科 癌症 计算机科学
作者
Zhe Wu,Xiaoyue Jia,Lin Lü,Chenxi Xu,Yu Pang,Silong Peng,Mujun Liu,Yi Wu
出处
期刊:Clinical Oncology [Elsevier]
卷期号:36 (7): e209-e223 被引量:2
标识
DOI:10.1016/j.clon.2024.03.022
摘要

Abstract

Aims

Accurate dose delivery is crucial for cervical cancer volumetric modulated arc therapy (VMAT). We aimed to develop a robust deep learning (DL) algorithm for fast and accurate dose prediction of cervical cancer VMAT in multi-center datasets and then explore the feasibility of the DL algorithm to endometrial cancer VMAT with different prescriptions.

Materials and methods

We proposed the AtTranNet algorithm for 3D dose prediction. A total of 367 cervical patients were enrolled in this study. 322 cervical patients from 3 centers were randomly divided into 70%, 10%, 20% as training, validation, testing sets. 45 cervical patients from another center were used as external testing. Moreover, 70 patients of endometrial cancer with different prescriptions were further used to test the model. Prediction precision was evaluated by dosimetric difference, dose map and dose volume histogram metrics.

Results

The prediction results were all clinically acceptable. The mean absolute error within the body in internal testing were 0.66±0.63%. The maximum |δD| for PTV was observed in D98, which is 1.24 ± 2.73 Gy. The maximum |δD| for OARs was observed in Dmean of bladder, which is 4.79 ±3.14 Gy. The maximum |δV| were observed in V40 of pelvic bones, which is 4.77±4.48 %.

Conclusion

AtTranNet showed the feasibility and reasonable accuracy in the dose prediction for cervical cancer in multi-center. The model can also be generalized for endometrial cancer with different prescriptions without any transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿泽完成签到,获得积分10
刚刚
1秒前
所所应助gxh采纳,获得10
1秒前
yout发布了新的文献求助10
1秒前
2秒前
可爱枕头应助小立采纳,获得10
2秒前
FashionBoy应助小立采纳,获得10
2秒前
无花果应助小立采纳,获得10
2秒前
善学以致用应助小立采纳,获得10
2秒前
大个应助小立采纳,获得10
2秒前
李健的小迷弟应助小立采纳,获得10
2秒前
传奇3应助小立采纳,获得10
2秒前
Hello应助小立采纳,获得10
2秒前
飞快的访蕊完成签到,获得积分10
2秒前
小蘑菇应助小立采纳,获得10
2秒前
希望天下0贩的0应助小立采纳,获得10
2秒前
活力盼晴发布了新的文献求助10
3秒前
思源应助文艺思卉采纳,获得10
3秒前
隐形曼青应助miaomiao采纳,获得10
3秒前
liuker发布了新的文献求助10
4秒前
今后应助傅昌盛采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
FashionBoy应助有热心愿意采纳,获得10
5秒前
jjb发布了新的文献求助10
6秒前
6秒前
Lucas应助胖胖采纳,获得10
6秒前
whyzz完成签到,获得积分10
7秒前
开放的音响关注了科研通微信公众号
7秒前
8秒前
大白薯完成签到,获得积分10
8秒前
9秒前
yitai完成签到,获得积分10
9秒前
科研通AI6应助月儿采纳,获得10
10秒前
生动的冰双关注了科研通微信公众号
10秒前
10秒前
活力盼晴完成签到,获得积分10
11秒前
666发布了新的文献求助10
11秒前
星星完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5527912
求助须知:如何正确求助?哪些是违规求助? 4617651
关于积分的说明 14559114
捐赠科研通 4556224
什么是DOI,文献DOI怎么找? 2496808
邀请新用户注册赠送积分活动 1477111
关于科研通互助平台的介绍 1448452