已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A fast hypergraph neural network with detail preservation for hyperspectral image classification

高光谱成像 人工神经网络 计算机科学 模式识别(心理学) 人工智能 超图 图像(数学) 遥感 地质学 数学 离散数学
作者
Feilong Cao,Jianmin Bao,Bing Yang,Hailiang Ye
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (9): 3104-3128
标识
DOI:10.1080/01431161.2024.2343133
摘要

Hypergraph neural networks (HGNNs), extending the techniques of graph neural networks, have been applied to various fields due to their ability to capture more complex high-order node relationships. However, for hyperspectral image (HSI) classification tasks, previous HGNN-based works usually constructed hypergraphs using pixels as nodes, resulting in massive computational costs. Meanwhile, pixel-level personalized features are required for HSI classification. To achieve high efficiency and accuracy simultaneously, this paper presents a fast hypergraph neural network with detail preservation (DPFHNet) for HSI classification. It constructs hypergraphs at the superpixel level to reduce time consumption and supplement pixel-level detail features through a classification refinement module. This framework contains multiple stages. Firstly, its main stage is designed with HGNNs from a superpixel viewpoint rather than pixels, providing a fast strategy to capture high-order complex relationships of multiple homogeneous irregular regions. After that, auxiliary stages based on convolutional neural networks are integrated into the main stage, which adopts a hierarchical design and attempts to acquire pixel-level spatial-spectral information before the hypergraph feature extraction of the main stage, assisting in learning more valuable features. Finally, a classification refinement module is constructed, which generates pixel-level detail features to refine the superpixel-level features obtained by HGNN. Experiments on three datasets illustrate that DPFHNet achieves competitive results and efficiency compared to advanced methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lingxi完成签到,获得积分10
1秒前
3秒前
4秒前
4秒前
4秒前
牙牙完成签到,获得积分10
4秒前
Trey发布了新的文献求助10
7秒前
hfguwn完成签到,获得积分10
7秒前
大模型应助南风不竞采纳,获得10
7秒前
巴巴bow发布了新的文献求助10
8秒前
8秒前
北风完成签到 ,获得积分10
8秒前
山南栀发布了新的文献求助10
8秒前
韭黄发布了新的文献求助10
8秒前
11秒前
小二郎应助wwwww采纳,获得10
11秒前
wAchlNiinM完成签到 ,获得积分10
11秒前
情怀应助韭黄采纳,获得10
11秒前
庚午发布了新的文献求助10
12秒前
13秒前
herui完成签到,获得积分20
13秒前
英俊的铭应助GT采纳,获得10
14秒前
14秒前
酷波er应助负责从丹采纳,获得10
15秒前
科研通AI6应助LLoud采纳,获得10
16秒前
LL发布了新的文献求助10
17秒前
17秒前
19秒前
时不我待完成签到,获得积分10
20秒前
今天别生气完成签到,获得积分10
20秒前
20秒前
爆米花应助李科研采纳,获得10
20秒前
20秒前
21秒前
xiabiao完成签到,获得积分20
23秒前
23秒前
25秒前
26秒前
mumu发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401052
求助须知:如何正确求助?哪些是违规求助? 4520107
关于积分的说明 14078072
捐赠科研通 4432959
什么是DOI,文献DOI怎么找? 2433946
邀请新用户注册赠送积分活动 1426122
关于科研通互助平台的介绍 1404738