Efficient Multi-Organ Segmentation From 3D Abdominal CT Images With Lightweight Network and Knowledge Distillation

计算机科学 分割 人工智能 图像分割 图像(数学) 蒸馏 计算机视觉 色谱法 化学
作者
Qianfei Zhao,Lanfeng Zhong,Jianghong Xiao,Jingbo Zhang,Yinan Chen,Wenjun Liao,Shaoting Zhang,Guotai Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2513-2523 被引量:16
标识
DOI:10.1109/tmi.2023.3262680
摘要

Accurate segmentation of multiple abdominal organs from Computed Tomography (CT) images plays an important role in computer-aided diagnosis, treatment planning and follow-up. Currently, 3D Convolution Neural Networks (CNN) have achieved promising performance for automatic medical image segmentation tasks. However, most existing 3D CNNs have a large set of parameters and huge floating point operations (FLOPs), and 3D CT volumes have a large size, leading to high computational cost, which limits their clinical application. To tackle this issue, we propose a novel framework based on lightweight network and Knowledge Distillation (KD) for delineating multiple organs from 3D CT volumes. We first propose a novel lightweight medical image segmentation network named LCOV-Net for reducing the model size and then introduce two knowledge distillation modules (i.e., Class-Affinity KD and Multi-Scale KD) to effectively distill the knowledge from a heavy-weight teacher model to improve LCOV-Net's segmentation accuracy. Experiments on two public abdominal CT datasets for multiple organ segmentation showed that: 1) Our LCOV-Net outperformed existing lightweight 3D segmentation models in both computational cost and accuracy; 2) The proposed KD strategy effectively improved the performance of the lightweight network, and it outperformed existing KD methods; 3) Combining the proposed LCOV-Net and KD strategy, our framework achieved better performance than the state-of-the-art 3D nnU-Net with only one-fifth parameters. The code is available at https://github.com/HiLab-git/LCOVNet-and-KD .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助aaaaarfv采纳,获得10
2秒前
3秒前
天天快乐应助幸福的向彤采纳,获得10
3秒前
3秒前
蜗牛完成签到 ,获得积分10
4秒前
4秒前
可爱的函函应助灵巧谷波采纳,获得10
5秒前
5秒前
6秒前
内向莛完成签到,获得积分10
7秒前
微笑饼干发布了新的文献求助10
7秒前
sword完成签到,获得积分10
8秒前
ju龙哥发布了新的文献求助10
8秒前
蒙蒙发布了新的文献求助10
9秒前
10秒前
10秒前
胡真完成签到 ,获得积分10
11秒前
cruiser完成签到,获得积分10
11秒前
cdercder应助冰冰采纳,获得10
12秒前
13秒前
Jasper应助爱吃香菜采纳,获得10
13秒前
13秒前
13秒前
wjx完成签到 ,获得积分10
13秒前
洋葱完成签到,获得积分20
14秒前
大力的大白菜真实的钥匙完成签到,获得积分10
14秒前
jjj应助HHHHHJ采纳,获得30
14秒前
SI发布了新的文献求助10
14秒前
洋葱发布了新的文献求助10
17秒前
lanxinyue完成签到,获得积分0
17秒前
17秒前
ll完成签到 ,获得积分10
17秒前
58984sasa发布了新的文献求助30
17秒前
香蕉觅云应助蒙蒙采纳,获得10
18秒前
18秒前
18秒前
kwen完成签到 ,获得积分10
18秒前
19秒前
19秒前
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783630
求助须知:如何正确求助?哪些是违规求助? 3328771
关于积分的说明 10238554
捐赠科研通 3044083
什么是DOI,文献DOI怎么找? 1670795
邀请新用户注册赠送积分活动 799874
科研通“疑难数据库(出版商)”最低求助积分说明 759171