心房扑动
心房颤动
深度学习
人工智能
节奏
计算机科学
一般化
机器学习
模式识别(心理学)
心脏病学
内科学
数学
医学
数学分析
作者
Noam Ben-Moshe,Kenta Tsutsui,Shany Biton,Leif Sörnmo,Joachim A. Behar
出处
期刊:Cornell University - arXiv
日期:2024-01-01
标识
DOI:10.48550/arxiv.2401.05411
摘要
Introduction: Deep learning models for detecting episodes of atrial fibrillation (AF) using rhythm information in long-term, ambulatory ECG recordings have shown high performance. However, the rhythm-based approach does not take advantage of the morphological information conveyed by the different ECG waveforms, particularly the f-waves. As a result, the performance of such models may be inherently limited. Methods: To address this limitation, we have developed a deep learning model, named RawECGNet, to detect episodes of AF and atrial flutter (AFl) using the raw, single-lead ECG. We compare the generalization performance of RawECGNet on two external data sets that account for distribution shifts in geography, ethnicity, and lead position. RawECGNet is further benchmarked against a state-of-the-art deep learning model, named ArNet2, which utilizes rhythm information as input. Results: Using RawECGNet, the results for the different leads in the external test sets in terms of the F1 score were 0.91--0.94 in RBDB and 0.93 in SHDB, compared to 0.89--0.91 in RBDB and 0.91 in SHDB for ArNet2. The results highlight RawECGNet as a high-performance, generalizable algorithm for detection of AF and AFl episodes, exploiting information on both rhythm and morphology.
科研通智能强力驱动
Strongly Powered by AbleSci AI