CT image reconstruction via industrial CT fast scanning

图像(数学) 迭代重建 计算机科学 计算机视觉 工业计算机断层扫描 人工智能 核医学 断层摄影术 材料科学 光学 物理 医学
作者
Lijuan Bai,Yirou Du,Chao Long
出处
期刊:Journal of Instrumentation [IOP Publishing]
卷期号:19 (03): P03009-P03009 被引量:1
标识
DOI:10.1088/1748-0221/19/03/p03009
摘要

Abstract In automated manufacturing and safety inspection, there is a high demand for fast computed tomography (CT) scanning and image reconstruction. Currently, faster scanning can be achieved by reducing the X-ray exposure time within sparse view CT. The faster scanning strategy introduces significant streak artefacts and noise during the sampling process. Consequently, streak artefacts and noise need to be simultaneously suppressed, which is poses a challenge for existing reconstruction methods. This paper presents a fast iterative reconstruction algorithm that can simultaneously suppress both streak artefacts and noise. This method can not only reconstruct high-fidelity images from rapidly acquired projection data, but also has a faster reconstruction speed than the existing iterative reconstruction algorithms. First, we present a high-order multi-directional total variation (HOM-TV) method that specifically focuses on preserving edge details of the image. Then, we present a fast iterative reconstruction model by incorporating HOM-TV and non-local means into the objective function. Finally, the effectiveness of the presented reconstruction model is validated by simulation and real experiments. The faster scanning method can complete the scan in only 5 seconds, and the structural similarity index (SSIM) of the CT image reconstructed by our method is 0.9755, which is higher than 0.0175 of the Fast Null Space Reconstruction (FNSR) algorithm. The peak signal-to-noise ratio (PSNR) index is 1.656, which is higher than that of the contrast algorithm. In terms of reconstruction time, our algorithm can achieve reconstruction in as little as 36 seconds, outperforming the baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XIAW完成签到,获得积分20
刚刚
刚刚
刚刚
CipherSage应助zz采纳,获得10
刚刚
huopppp发布了新的文献求助10
1秒前
huopppp发布了新的文献求助10
1秒前
huopppp发布了新的文献求助10
1秒前
huopppp发布了新的文献求助10
1秒前
huopppp发布了新的文献求助10
1秒前
huopppp发布了新的文献求助10
1秒前
huopppp发布了新的文献求助10
1秒前
huopppp发布了新的文献求助10
1秒前
huopppp发布了新的文献求助10
1秒前
huopppp发布了新的文献求助10
1秒前
huopppp发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
科研通AI6应助迅速唯雪采纳,获得10
3秒前
4秒前
4秒前
小马甲应助HUAN采纳,获得10
5秒前
5秒前
共享精神应助pzh采纳,获得10
5秒前
6秒前
发发发发布了新的文献求助10
6秒前
liuguohua126完成签到,获得积分10
6秒前
6秒前
6秒前
晰默发布了新的文献求助10
6秒前
7秒前
bidefu发布了新的文献求助10
8秒前
zzs发布了新的文献求助50
8秒前
8秒前
8秒前
CodeCraft应助木炭采纳,获得10
9秒前
xubozhao完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648879
求助须知:如何正确求助?哪些是违规求助? 4777004
关于积分的说明 15046015
捐赠科研通 4807773
什么是DOI,文献DOI怎么找? 2571091
邀请新用户注册赠送积分活动 1527735
关于科研通互助平台的介绍 1486650