AI-Enabled Trajectory Optimization of Logistics UAVs With Wind Impacts in Smart Cities

有效载荷(计算) 计算机科学 弹道 能源消耗 运动规划 风力发电 过程(计算) 遗传算法 轨迹优化 实时计算 路径(计算) 模拟 工程类 人工智能 机器人 操作系统 电气工程 机器学习 物理 计算机网络 网络数据包 程序设计语言 天文
作者
Pengfei Du,Yueqiang Shi,Haotong Cao,Sahil Garg,Mubarak Alrashoud,Piyush Kumar Shukla
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (1): 3885-3897 被引量:10
标识
DOI:10.1109/tce.2024.3355061
摘要

AI-enabled logistics unmanned aerial vehicles (UAVs) are progressively revealing their unique advantages for future smart cities. Nevertheless, the existing research on logistics UAV path planning lacks to simultaneously consider the UAV energy consumption constraints, the customer time windows, the impacts of wind speed and direction. This omission renders the existing models inappropriate for real-world transportation systems. Besides, the UAVs are still constrained by the limited payload and battery due to the highly automatic delivery process. Consequently, we investigate the effect of wind speed and direction on UAV flight states, establishes pertinent parameters and their resolution methods impacted by wind conditions, and delves into the logistics UAV path planning issue that concurrently considers the UAV energy consumption constraints, the customer time windows, and the impact of wind conditions. To resolve the proposed trajectory optimization issue, the large-scale neighborhood search algorithm (LNS) is amalgamated with the genetic algorithm (GA), forming the GA-LNS, to address the static problem, while dynamic planning concepts are employed in the decoding process of GA-LNS to solve the dynamic trajectory optimization problem. Simulation results demonstrate that the devised algorithms yield superior solutions within a plausible timeframe, reducing distribution costs by approximately 9% in comparison to the conventional GA. Unlike the no-wind and static scenarios, path planning that incorporates dynamic wind conditions circumvents issues related to energy constraints and customer satisfaction bias evident in the prior cases. Furthermore, the proposed algorithm can provide a high-efficiency, low-energy-consumption, and low-delay UAV planning strategy in the scenario of UAV-assisted data collection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长风发布了新的文献求助10
刚刚
刚刚
一杯奶茶完成签到,获得积分10
刚刚
可靠往事完成签到,获得积分10
刚刚
kjikji发布了新的文献求助10
刚刚
1秒前
1秒前
SciGPT应助TheGreat采纳,获得10
1秒前
干净以珊完成签到,获得积分10
2秒前
Fury发布了新的文献求助10
2秒前
2秒前
夏辉发布了新的文献求助10
3秒前
斯文莺发布了新的文献求助10
3秒前
3秒前
嗯嗯发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
搜集达人应助B站萧亚轩采纳,获得10
4秒前
科研通AI6应助改名PTe采纳,获得30
5秒前
cicytjsxjr发布了新的文献求助20
5秒前
迷路的糜发布了新的文献求助10
5秒前
5秒前
123完成签到,获得积分10
5秒前
hyper发布了新的文献求助10
5秒前
火烛发布了新的文献求助10
6秒前
一一一完成签到,获得积分10
6秒前
6秒前
ding应助阿琳采纳,获得10
6秒前
6秒前
6秒前
6秒前
会飞的猪发布了新的文献求助30
7秒前
小二郎应助崔宏玺采纳,获得10
7秒前
biu提发布了新的文献求助10
7秒前
8秒前
领导范儿应助好运滚滚来采纳,获得10
8秒前
几酌发布了新的文献求助30
8秒前
9秒前
共享精神应助有的没的采纳,获得10
10秒前
Gaminn完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940451
求助须知:如何正确求助?哪些是违规求助? 4206580
关于积分的说明 13074753
捐赠科研通 3985154
什么是DOI,文献DOI怎么找? 2182031
邀请新用户注册赠送积分活动 1197696
关于科研通互助平台的介绍 1110012