Microstructure evolution and mechanical properties of high strength and high conductivity Cu Fe alloy wire prepared by cold drawing

材料科学 微观结构 合金 极限抗拉强度 冶金 降水 扫描电子显微镜 相(物质) 复合材料 化学 气象学 有机化学 物理
作者
Wenting Qiu,Liangyu Zheng,Qiru Wang,Xiaojun Li,Guohui Chao,Yanlong Xiang,Yongru Wang,Shen Gong,Zhou Li
出处
期刊:Materials Characterization [Elsevier BV]
卷期号:210: 113781-113781 被引量:6
标识
DOI:10.1016/j.matchar.2024.113781
摘要

CuFe alloy wire is widely used in the field of electronic information because of its high strength and high conductivity. In this study, Cu-5Fe-0.1Si-0.3 Mg-0.05RE (La, Ce) alloys were prepared by cold drawing and heat treatment. The microstructure evolution of the alloy during deformation was studied by optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM). Three kinds of second phases with different sizes and shapes were successfully constructed in the designed alloys, including fibrous iron phase, submicron spherical iron phase and nano spherical phase. The strength of the alloy is greatly improved by drawing deformation, with only slight reduction of the conductivity. Through joint addition of Mg, Si and rare earth elements, the designed CuFe alloy wire rod has excellent overall properties. It's electrical conductivity, tensile strength, yield strength and elongation reached 63.8% IACS, 831 MPa, 730 MPa and 6.1%, respectively. Detailed characterizations of the alloys reveal that: the addition of Mg reduces solid solubility limit of iron in matrix and spaces between iron phases; the FeSi phase formed by Si and Fe promotes the precipitation of iron phase; and the addition of rare earth inhibits segregation of second phase, recovery and recrystallization of the alloy, and the coarsening of Fe phase. The mechanical properties of the alloy are improved by fiber strengthening, Hall-Petch strengthening and precipitation strengthening, respectively. The contributions of precipitation strengthening, fiber strengthening and Hall-Petch strengthening to yield strength are 65 MPa, 59 MPa and 277 MPa, respectively. The microstructure of dislocation and fibrosis is the main factor of alloy strengthening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妹妹完成签到,获得积分10
刚刚
小尧完成签到,获得积分20
刚刚
李健应助楼轶采纳,获得10
1秒前
LCCCC发布了新的文献求助10
1秒前
别问我完成签到 ,获得积分20
2秒前
乐乐乐宝发布了新的文献求助10
3秒前
在水一方应助小猴采纳,获得10
3秒前
1233发布了新的文献求助10
3秒前
英姑应助鱼不鱼采纳,获得10
4秒前
xxxu完成签到,获得积分10
6秒前
又见白龙完成签到,获得积分10
6秒前
聪明汉堡发布了新的文献求助10
6秒前
李帆发布了新的文献求助20
6秒前
心内小白发布了新的文献求助10
6秒前
敏er好学发布了新的文献求助10
6秒前
漂亮凌旋完成签到,获得积分10
7秒前
9秒前
NexusExplorer应助SimonL采纳,获得10
9秒前
格子完成签到,获得积分10
10秒前
孤独士晋发布了新的文献求助10
10秒前
小骆驼完成签到,获得积分10
10秒前
星辰大海应助Yimi采纳,获得10
10秒前
10秒前
科研通AI2S应助别问我采纳,获得10
11秒前
Akim应助舒适路人采纳,获得10
11秒前
虚心柠檬完成签到 ,获得积分10
11秒前
上官若男应助落花生采纳,获得10
11秒前
科研通AI5应助404采纳,获得10
12秒前
晴晴完成签到,获得积分10
13秒前
14秒前
zxd1999完成签到,获得积分10
14秒前
14秒前
聪明汉堡完成签到,获得积分10
15秒前
15秒前
16秒前
大个应助123采纳,获得10
16秒前
科研通AI5应助lgbabe采纳,获得10
17秒前
17秒前
土豆完成签到,获得积分10
17秒前
泡泡糖发布了新的文献求助20
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786235
求助须知:如何正确求助?哪些是违规求助? 3331908
关于积分的说明 10252787
捐赠科研通 3047188
什么是DOI,文献DOI怎么找? 1672476
邀请新用户注册赠送积分活动 801290
科研通“疑难数据库(出版商)”最低求助积分说明 760141