Analyzing predictors of in-hospital mortality in patients with acute ST-segment elevation myocardial infarction using an evolved machine learning approach

支持向量机 机器学习 人工智能 心肌梗塞 特征选择 渡线 计算机科学 医学 内科学
作者
Mengge Gong,Dongjie Liang,Diyun Xu,Youkai Jin,Guoqing Wang,Peiren Shan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 107950-107950 被引量:8
标识
DOI:10.1016/j.compbiomed.2024.107950
摘要

Acute ST-segment elevation myocardial infarction (STEMI) is a severe cardiac ailment characterized by the sudden complete blockage of a portion of the coronary artery, leading to the interruption of blood supply to the myocardium. This study examines the medical records of 3205 STEMI patients admitted to the coronary care unit of the First Affiliated Hospital of Wenzhou Medical University from January 2014 to December 2021. In this research, a novel predictive framework for STEMI is proposed, incorporating evolutionary computational methods and machine learning techniques. A variant algorithm, AGCOSCA, is introduced by integrating crossover operation and observation bee strategy into the original Sine Cosine Algorithm (SCA). The effectiveness of AGCOSCA is initially validated using IEEE CEC 2017 benchmark functions, demonstrating its ability to mitigate the deficiency in local mining after SCA random perturbation. Building upon this foundation, the AGCOSCA approach has been paired with Support Vector Machine (SVM) to forge the predictive framework referred to as AGCOSCA-SVM. Specifically, AGCOSCA is employed to refine the selection of predictors from a substantial feature set before SVM is utilized to forecast the occurrence of STEMI. In our analysis, we observed that SVM excels at managing nonlinear data relationships, a strength that becomes particularly prominent in smaller datasets of STEMI patients. To assess the effectiveness of AGCOSCA-SVM, diagnostic experiments were conducted based on the STEMI sample data. Results indicate that AGCOSCA-SVM outperforms traditional machine learning methods, achieving superior Accuracy, Sensitivity, and Specificity values of 97.83 %, 93.75 %, and 96.67 %, respectively. The selected features, such as acute kidney injury (AKI) stage, fibrinogen, mean platelet volume (MPV), free triiodothyronine (FT3), diuretics, and Killip class during hospitalization, are identified as crucial for predicting STEMI. In conclusion, AGCOSCA-SVM emerges as a promising model framework for supporting the diagnostic process of STEMI, showcasing potential applications in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llly完成签到,获得积分10
2秒前
安紊完成签到,获得积分10
3秒前
xiaoyi发布了新的文献求助10
3秒前
5秒前
花开富贵完成签到,获得积分10
6秒前
今后应助等风来采纳,获得10
8秒前
铲铲完成签到,获得积分10
11秒前
11秒前
朱家晓发布了新的文献求助10
12秒前
王一完成签到 ,获得积分10
12秒前
14秒前
14秒前
提灯完成签到,获得积分20
14秒前
17秒前
17秒前
19秒前
大头完成签到 ,获得积分10
20秒前
21秒前
LIANG发布了新的文献求助10
22秒前
花开富贵发布了新的文献求助10
23秒前
big龙完成签到,获得积分10
24秒前
朴实雨竹完成签到,获得积分10
27秒前
短腿小柯基完成签到 ,获得积分10
27秒前
28秒前
止兮发布了新的文献求助10
28秒前
albertchan完成签到,获得积分10
28秒前
WYB发布了新的文献求助20
28秒前
研友_2484完成签到,获得积分10
29秒前
32秒前
沉默的半凡完成签到,获得积分10
34秒前
xingyi完成签到,获得积分10
34秒前
34秒前
愉快的冰珍完成签到 ,获得积分10
35秒前
哭泣的猕猴桃完成签到,获得积分10
36秒前
就好完成签到 ,获得积分10
36秒前
37秒前
陌上花开完成签到,获得积分0
39秒前
止兮完成签到,获得积分10
40秒前
djh完成签到,获得积分10
41秒前
英俊白莲发布了新的文献求助10
41秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808948
求助须知:如何正确求助?哪些是违规求助? 3353666
关于积分的说明 10366348
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766320