Construction and validation of molecular subtype and signature of immune cell‐related telomeric genes and prediction of prognosis and immunotherapy efficacy in ovarian cancer patients

免疫疗法 肿瘤科 卵巢癌 比例危险模型 免疫系统 生物 亚型 计算生物学 癌症 内科学 生物信息学 医学 免疫学 计算机科学 程序设计语言
作者
Lele Ling,Bingrong Li,Huijing Wu,Kaiyong Zhang,Siwen Li,Boliang Ke,Zhengyang Zhu,Te Liu,Peng Liu,Bimeng Zhang
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1)
标识
DOI:10.1002/jgm.3606
摘要

Abstract Background Ovarian cancer (OVC) has emerged as a fatal gynecological malignancy as a result of a lack of reliable methods for early detection, limited biomarkers and few treatment options. Immune cell‐related telomeric genes (ICRTGs) show promise as potential biomarkers. Methods ICRTGs were discovered using weighted gene co‐expression network analysis (WGCNA). ICRTGs were screened for significant prognosis using one‐way Cox regression analysis. Subsequently, molecular subtypes of prognosis‐relevant ICRTGs were constructed and validated for OVC, and the immune microenvironment's landscape across subtypes was compared. OVC prognostic models were built and validated using prognosis‐relevant ICRTGs. Additionally, chemotherapy susceptibility drugs for OVC patients in the low‐ and high‐risk groups of ICRTGs were screened using genomics of drug susceptibility to cancer (GDSC). Finally, the immunotherapy response in the low‐ and high‐risk groups was detected using the data from GSE78220. We conducted an immune index correlation analysis of ICRTGs with significant prognoses. The MAP3K4 gene, for which the prognostic correlation coefficient is the highest, was validated using tissue microarrays for a prognostic‐immune index correlation. Results WGCNA analysis constructed a gene set of ICRTGs and screened 22 genes with prognostic significance. Unsupervised clustering analysis revealed the best molecular typing for two subtypes. The Gene Set Variation Analysis algorithm was used to calculate telomere scores and validate the molecular subtyping. A prognostic model was constructed using 17 ICRTGs. In the The Cancer Genome Atlas‐OVC training set and the Gene Expression Omnibus validation set (GSE30161), the risk score model's predicted risk groups and the actual prognosis were shown to be significantly correlated. GDSC screened Axitinib, Bexarotene, Embelin and the GSE78220 datasets and demonstrated that ICRTGs effectively distinguished the group that responds to immunotherapy from the non‐responsive group. Additionally, tissue microarray validation results revealed that MAP3K4 significantly predicted patient prognosis. Furthermore, MAP3K4 exhibited a positive association with PD‐L1 and a negative relationship with the M1 macrophage markers CD86 and INOS. Conclusions ICRTGs may be reliable biomarkers for the molecular typing of patients with OVC, enabling the prediction of prognosis and immunotherapy efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟沿衍言完成签到,获得积分10
刚刚
茜茜完成签到 ,获得积分10
1秒前
1秒前
SYLH应助liam采纳,获得30
2秒前
3秒前
多泽应助朴实的面包采纳,获得20
3秒前
默默的棉花糖完成签到,获得积分10
4秒前
Ayu王完成签到,获得积分10
4秒前
追光发布了新的文献求助30
4秒前
lolly完成签到,获得积分10
5秒前
云上人发布了新的文献求助10
5秒前
放空的酸奶完成签到,获得积分10
6秒前
没出门发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
kk摆烂发布了新的文献求助10
8秒前
8秒前
xixi完成签到 ,获得积分10
9秒前
万能图书馆应助binxman采纳,获得10
9秒前
JXH2000发布了新的文献求助10
11秒前
peng完成签到 ,获得积分10
12秒前
12秒前
烟沿衍言发布了新的文献求助10
12秒前
蟑先生发布了新的文献求助10
13秒前
Dr.Lyo发布了新的文献求助10
13秒前
天才玩家发布了新的文献求助10
14秒前
领导范儿应助孟子豪采纳,获得10
14秒前
852应助哈哈哈采纳,获得10
14秒前
15秒前
Hello应助包容的水壶采纳,获得10
16秒前
乐乐应助芥子采纳,获得30
18秒前
18秒前
谨慎采白完成签到 ,获得积分10
19秒前
椿椿完成签到,获得积分10
21秒前
21秒前
11111111111发布了新的文献求助10
21秒前
搜集达人应助yyl采纳,获得10
22秒前
23秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842525
求助须知:如何正确求助?哪些是违规求助? 3384644
关于积分的说明 10536237
捐赠科研通 3105132
什么是DOI,文献DOI怎么找? 1710053
邀请新用户注册赠送积分活动 823486
科研通“疑难数据库(出版商)”最低求助积分说明 774091