光热治疗
钯
黑色素瘤
调制(音乐)
催化作用
纳米技术
化学
材料科学
癌症研究
医学
生物化学
哲学
美学
作者
Duo Sun,Kaijun Liu,Yi Cheng,Jinju Sun,Jingqin Fang,Yi Tang,Fangyang Wang,Yu Amanda Guo,Yi Wang,Xiao Chen
摘要
Nanozymes are artificial enzymes that mimic natural enzyme-like activities and exhibit tremendous potential for tumor chemodynamic therapy. However, the development of novel nanozymes with superior catalytic activities for nanotheranostics remains a formidable challenge. Herein, we report a facile synthesis of monodisperse palladium nanosheets (Pd nanosheets) and their assembly on graphene oxide (GO) that enhances the catalytic activities of Pd nanoparticles. Simultaneously, the obtained nanocomposites (rGO-Pd) could be applied as a smart near-infrared (NIR) light-responsive nanotheranostic for near infrared imaging-guided chemodynamic/photothermal combined therapy. Notably, rGO-Pd exhibited high peroxidase mimicking activities, which could catalyze the conversion of intratumoral H2O2 to ˙OH. Impressively, the reactive oxygen species (ROS) generation of rGO-Pd was further remarkably enhanced by the endogenous acidity of the tumor microenvironment and the exogenous NIR light-responsive photothermal effect. These collective properties of the rGO-Pd nanozyme enabled it to be a ROS generation accelerator for photothermally enhanced tumor chemodynamic therapy. Thus, the as-developed rGO-Pd may represent a promising new type of high-performance nanozyme for multifunctional nanotheranostics toward cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI